Refine Your Search

Topic

Affiliation

Search Results

Journal Article

The Hybrid III Dummy Family Subject to Loading by a Motorized Shoulder Belt Tensioner

2008-04-14
2008-01-0516
Motorized shoulder belt tensioning is a new automotive seatbelt technology which has shown promise to reduce automotive crash injuries. The current study was conducted to determine if the Hybrid III family of dummies is an appropriate biofidelic surrogate for studying motorized shoulder belt tensioning. The objective was to measure torso retraction time, torso position, torso velocity, internal resistive moment, changes in torso curvature and the center of rotation of torso extension during seatbelt tensioning for the Hybrid III family. A previous study developed a protocol and test fixture to measure the biomechanics of volunteers subject to quasi-static loading by a motorized shoulder belt tensioner. A fixture supported the occupant leaning forward and applied shoulder belt tension. Kinematics were quantified by analyzing the motion of reflective markers on the dummy using an eight camera digital video system. A three axis load cell measured internal resistance to extension.
Technical Paper

Assessing the Safety Performance of Occupant Restraint Systems

1990-10-01
902328
The purpose of this study was to investigate approaches evaluating the performance of safety systems in crash tests and by analytical simulations. The study was motivated by the need to consider the adequacy of injury criteria and tolerance levels in FMVSS 208 measuring safety performance of restraint systems and supplements. The study also focused on additional biomechanical criteria and performance measures which may augment FMVSS 208 criteria and alternative ways to evaluate dummy responses rather than by comparison to a tolerance level. Additional analysis was conducted of dummy responses from barrier crash and sled tests to gain further information on the performance of restraint systems. The analysis resulted in a new computer program which determined several motion and velocity criteria from measurements made in crash tests.
Technical Paper

Stiff versus Yielding Seats: Analysis of Matched Rear Impact Tests

2007-04-16
2007-01-0708
The objective of this study was to analyze available anthropomorphic test device (ATD) responses from KARCO rear impact tests and to evaluate an injury predictive model based on crash severity and occupant weight presented by Saczalski et al. (2004). The KARCO tests were carried out with various seat designs. Biomechanical responses were evaluated in speed ranges of 7-12, 13-17, 18-23 and 24-34 mph. For this analysis, all tests with matching yielding and stiff seats and matching occupant size and weight were analyzed for cases without 2nd row occupant interaction. Overall, the test data shows that conventional yielding seats provide a high degree of safety for small to large adult occupants in rear crashes; this data is also consistent with good field performance as found in NASS-CDS. Saczalski et al.'s (2004) predictive model of occupant injury is not correct as there are numerous cases from NASS-CDS that show no or minor injury in the region where serious injury is predicted.
Technical Paper

Crash Injury Risks for Obese Occupants

2008-04-14
2008-01-0528
Obesity rates are reaching an epidemic worldwide. In the US, nearly 40 million people are obese. The automotive safety community is starting to question the impact of obesity on occupant protection. This study investigates fatality and serious injury risks for front-seat occupants by Body Mass Index (BMI). NASS-CDS data was analyzed for calendar years 1993-2004. Occupant exposure and injury was divided in seven BMI categories with obese defined as those with BMI ≥ 30 kg/m2. Injuries were studied for drivers and right-front passengers and included analysis of lap-shoulder belted and unbelted occupants. The results show that obese occupants have a higher fatality risk compared to normal BMI occupants; morbidly obese occupants (BMI ≥ 40 kg/m2) have 2.25 times higher fatality risk (1.15% v 0.51%). The fatality risk for belted obese drivers was 0.29%, which was 6.7 times lower than the 1.94% for those unbelted. These rates are similar to other BMI occupants.
Technical Paper

Motorized Shoulder Belt Tensioning: Modeling and Performance for a Diverse Occupant Population

2008-04-14
2008-01-0515
Motorized shoulder belt tensioning is an occupant protection technology that has promise to reduce automotive crash injuries. The objective of this study was to model the response of a diverse forward-leaning occupant population (6-year-old child, 5th female, 50th male, 95th male) to shoulder belt tensioning during straight line pre-crash braking. The lumped mass model was based on experimental volunteer data for motorized shoulder belt tensioning gathered in a previous quasistatic study. The three dimensional model incorporated the biomechanical properties of the occupant populations, a motorized shoulder belt tensioner (DC motor and controller) and shoulder belt webbing models. Model validation was achieved against the volunteer experiments for angular torso position, torso velocity and shoulder belt moment applied to the torso.
Technical Paper

Influence of Seating Position on Dummy Responses with ABTS Seats in Severe Rear Impacts

2009-04-20
2009-01-0250
Objective: This study analyzes rear sled tests with a 95th% male and 5th% female Hybrid III dummy in various seating positions on ABTS (All Belt to Seat) seats in severe rear impact tests. Dummy interactions with the deforming seatback and upper body extension around the seat frame are considered. Methods: The 1st series involved an open sled fixture with a Sebring ABTS seat at 30 mph rear delta V. A 95th% Hybrid III dummy was placed in four different seating positions: 1) normal, 2) leaning inboard, 3) leaning forward and inboard, and 4) leaning forward and outboard. The 2nd series used a 5th% female Hybrid III dummy in a Grand Voyager body buck at 25 mph rear delta V. The dummy was leaned forward and inboard on a LeSabre ABTS or Voyager seat. The 3rd series used a 5th% female Hybrid III dummy in an Explorer body buck at 26 mph rear delta V. The dummy was leaned forward and inboard on a Sebring ABTS or Explorer seat.
Technical Paper

Neck Biomechanical Responses with Active Head Restraints: Rear Barrier Tests with BioRID and Sled Tests with Hybrid III

2002-03-04
2002-01-0030
Active head restraints are being used to reduce the risk of whiplash in rear crashes. However, their evaluation in laboratory tests can vary depending on the injury criteria and test dummy. The objective of this study was to conduct barrier tests with BioRID and sled tests with Hybrid III to determine the most meaningful responses related to whiplash risks in real-world crashes. This study involved: (1) twenty-four rear barrier tests of the Saab 9000, 900, 9-3 and 9-5 with two fully instrumented BioRID dummies placed in the front or rear seats and exposed to 24 and 48.3 km/h barrier impacts, and (2) twenty rear sled tests at 5-38 km/h delta V in three series with conventional, modified and SAHR seats using the Hybrid III dummy. A new target superposition method was used to track head displacement and rotation with respect to T1. Insurance data on whiplash claims was compared to the dummy responses.
Technical Paper

Effectiveness of Safety Belts and Airbags in Preventing Fatal Injury

1991-02-01
910901
Airbags and safety belts are now viewed as complements for occupant protection in a crash. There is also a view that no single solution exists to ensure safety and that a system of protective technologies is needed to maximize safety in the wide variety of real automotive crashes. This paper compares the fatality prevention effectiveness, and biomechanical principles of occupant restraint systems. It focuses on the effectiveness of various systems in preventing fatal injury assuming the restraint is available and used. While lap-shoulder belts provide the greatest safety, airbags protect both belted and unbelted occupants.
Technical Paper

History of Safety Research and Development on the General Motors Energy-Absorbing Steering System

1991-10-01
912890
This paper covers the development of the General Motors Energy Absorbing Steering System beginning with the work of the early crash injury pioneers Hugh DeHaven and Colonel John P. Stapp through developments and introduction of the General Motors energy absorbing steering system in 1966. evaluations of crash performance of the system, and further improvement in protective function of the steering assembly. The contributions of GM Research Laboratories are highlighted, including its safety research program. Safety Car, Invertube, the biomechanic projects at Wayne State University, and the thoracic and abdominal tolerance studies that lead to the development of the Viscous Injury Criterion and self-aligning steering wheel.
Technical Paper

Evaluation of Armrest Loading in Side Impacts

1991-10-01
912899
Door armrests of different crush properties and placement were evaluated in a series of side impact sled tests. Three armrest designs were fabricated with an identical shape but different crush force. The crush properties covered a range in occupant protection systems based on knowledge of human tolerance in side impacts. With BioSID, the softest armrest produced the lowest compression and Viscous responses, and the probability of AIS 4+ injury was below 1%. The compression-based responses increased significantly in tests with armrests of a higher crush force. The profile of the stiffer armrests clearly protruded into the dummy, and the probability of serious injury was 86%-100% based on compression. With SID, the lowest TTI(d) was with the intermediate stiffness armrest. The SID dummy and TTI(d) criterion indicated a 4%-8% probability of AIS 4+ injury for all test conditions and armrest designs.
Technical Paper

Research Issues on the Biomechanics of Seating Discomfort: An Overview with Focus on Issues of the Elderly and Low-Back Pain

1992-02-01
920130
This paper reviews issues relating to seats including design for comfort and restraint, mechanics of discomfort and irritability, older occupants, and low-back pain. It focuses on the interface between seating technology and occupant comfort, and involves a technical review of medical-engineering information. The dramatic increase in the number of features currently available on seats outreaches the technical understanding of occupant accommodation and ride comfort. Thus, the current understanding of seat design parameters may not adequately encompass occupant needs. The review has found many pathways between seating features and riding comfort, each of which requires more specific information on the biomechanics of discomfort by pressure distribution, body support, ride vibration, material breathability, and other factors. These inputs stimulate mechanisms of discomfort that need to be quantified in terms of mechanical requirements for seat design and function.
Technical Paper

Rear Impact Tests of Starcraft-Type Seats with Out-of-Position and In-Position Dummies

2011-04-12
2011-01-0272
Objective: This study analyzed available rear impact sled tests with Starcraft-type seats that use a diagonal belt behind the seatback. The study focused on neck responses for out-of-position (OOP) and in-position seated dummies. Methods: Thirteen rear sled tests were identified with out-of-position and in-position 5 th , 50 th and 95 th Hybrid III dummies in up to 47.6 mph rear delta Vs involving Starcraft-type seats. The tests were conducted at Ford, Exponent and CSE. Seven KARCO rear sled tests were found with in-position 5 th and 50 th Hybrid III dummies in 21.1-29.5 mph rear delta Vs involving Starcraft-type seats. In all of the in-position and one of the out-of-position series, comparable tests were run with production seats. Biomechanical responses of the dummies and test videos were analyzed.
Technical Paper

Restraint of a Belted or Unbelted Occupant by the Seat in Rear-End Impacts

1992-11-01
922522
This sled test series involved occupant loading of the seat in rear crashes of 4.3-8.3 m/s (9.6-18.5 mph). The tests were conducted in the early 1980s and involved an unbelted or lap-shoulder belted Part 572 dummy in rear and oblique rear impacts. The research is reported today to provide comparative data for the record and serves as a control benchmark for more current technologies and safety research methodologies on seat performance in rear crashes. Safety belts improved occupant retention on the seat primarily by the lap belt reducing the upward and rearward movement of the pelvis. Tests were also conducted on the mechanisms for energy absorption by seatback deflection.
Technical Paper

Field Data Analysis of Rear Occupant Injuries Part I: Adults and Teenagers

2003-03-03
2003-01-0153
Since more occupants are using rear seats of vehicles, a better understanding of priorities for rear occupant protection is needed as future safety initiatives are considered. A two-part study was conducted on occupant injuries in rear seating positions. In Part I, adult and teenage occupants ≥13 years of age are investigated. In Part II, children aged 4-12 years old and toddlers and infants aged 0-3 are studied separately because of the use of infant and child seats and boosters involve different injury mechanisms and tolerances. The objectives of this study on adult and teenager, rear-seated occupants (≥13 years old) are to: 1) review accident data, 2) identify the distribution of rear occupants, and 3) analyze injury risks in various crash modes, including rollovers, frontal, side and rear impacts. Three databases were investigated: NASS-CDS, GES and FARS.
Technical Paper

Field Data Analysis of Rear Occupant Injuries Part II: Children, Toddlers and Infants

2003-03-03
2003-01-0154
Child safety continues to be an important issue in automotive safety for many reasons, including reported cases of serious injury from airbag deployments. As a result of extensive public education campaigns, most children are now placed in rear seats of vehicles. Accordingly, a more precise understanding of rear-seat occupant protection is developing as the second and third rows have become the primary seating area for children in SUVs, vans and passenger cars. The objective of this study was to review field crash and injury data from rear seats, identify the distribution of children and infants in rear seats, and analyze injury risks in various crash modes. The database used was the 1991-1999 NASS-CDS. When looking at crash configurations for 1st and 2nd row children, rollover crashes involved the highest incidence of MAIS 3+ injury, followed by frontal and side impacts. Lap-shoulder belt usage was similar for 1st and 2nd row children.
Technical Paper

Biofidelity and Injury Assessment in Eurosid I and Biosid

1995-11-01
952731
Side impact pendulum tests were conducted on Eurosid I and Biosid to assess the biofidelity of the thorax, abdomen and pelvis, and determine injury tolerance levels. Each body region was impacted at 4.5, 6.7, and 9.4 m/s using test conditions which duplicate cadaver impacts with a 15 cm flat-circular 23.4 kg rigid mass. The cadaver database establishes human response and injury risk assessment in side impact. Both dummies showed better biofidelity when compared to the lowest-speed cadaver response corridor. At higher speeds, peak force was substantially higher. The average peak contact force was 1.56 times greater in Biosid and 2.19 times greater in Eurosid 1 than the average cadaver response. The Eurosid I abdomen had the most dissimilar response and lacks biofidelity. Overall, Biosid has better biofidelity than Eurosid I with an average 21% lower peak load and a closer match to the duration of cadaver impact responses for the three body regions.
Technical Paper

Test Dummy Interaction with a Shoulder or Lap Belt

1981-10-01
811017
Belt interaction with the dummy's chest or pelvis was investigated during simulated frontal decelerations to develop a better understanding of the mechanics of belt restraint. Hyge sled tests were conducted at acceleration levels of 6-16 g's with a Part 572 dummy forward facing on an automotive bucket seat. Dynamics were compared in similar tests where the dummy was restrained by a conventional shoulder belt or belt segments attached to a modified sternum - a steel sternum with extensions for fixed belt attachments. Tests were also conducted with a conventional lap belt or belt segments fixed to an extension of the H point. Deformation characteristics of the standard and modified thorax were determined for a lateral and superior point load or a belt yoke compression of the sternum. The pelvic structure was also compressed by a lap belt. Our evaluation of test dummy dynamics indicates the following sequence of events with a conventional shoulder belt: 1.)
Technical Paper

Influence of Initial Length of Lap-Shoulder Belt on Occupant Dynamics-A Comparison of Sled Testing and MVMA–2D Modeling

1980-09-01
801309
The primary purpose of this parameter study was to carefully document occupant dynamics in well-controlled sled tests for comparison with simulated responses from the MVMA-2D analytical model. The test involved a Part 572 dummy exposed to a frontal deceleration while on a bucket seat and restrained by a lap-shoulder belt system. The length of belt webbing was incrementally increased from a snug configuration by as much as 30 cm. The addition of webbing increased the forward excursion, velocity, and acceleration of the head, chest, and hip without affecting the peak tension in the belt segments of the restraint system. Belt tension was identified as a poor measure of the horizontal load on the chest due to significant reaction forces in the lateral and vertical direction at the belt anchorages.
Technical Paper

Influence of Lateral Restraint on Occupant Interaction with a Shoulder Belt or Preinflated Air Bag in Oblique Impacts

1981-02-01
810370
Sled tests were conducted at farside oblique angles of 15°, 45°, and 75° with a Part 572 dummy restrained by a conventional driver lap/shoulder belt system or a preinflated driver inflatable restaint. Occupant dynamics were compared in similar tests where an inboard energy absorbing lateral restraint of the upper torso was or was not used. It can be concluded that the seat wing improves the control of the dummy's dynamics in oblique impacts by directing the occupant's motion more forward into the restraint system, thereby taking more advantage of the restraining potential of the shoulder belt or inflatable restraint in controlling the deceleration of the dummy and enhancing the benefit of the restraint system. However, additional factors associated with the use of a seat wing remain to be investigated including the effect of impact force on the occupant, interaction with out-of-position occupants and comfort/convenience.
Technical Paper

Influence of Crush Orientation on Knee Bolster Function in Barrier Crash Simulation

1980-06-01
800852
Barrier crash simulations with a torsobelted Part 572 dummy were conducted to determine the influence of knee bolster crush orientations of 0°–60° on lower extremity restraint. Responses from two sled velocity and mean deceleration severities were investigated: 6.6 m/s at 7.5 g and 13.5 m/s at 13.9 g. The dummy’s knees were prepositioned 10 cm from individual experimental bolsters, which crushed along a predetermined axis. Bolster orientation had only a minor effect on the level of peak dummy femur, and resultant knee bolster reaction load and on lower extremity kinematics of the torsobelted occupant; however, the local loading of the knee and level of tibial compression were significantly influenced.
X