Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Driver Body Size Considerations in Future U. S. Heavy Truck Interior Cab Design

1981-02-01
810218
Accurate data on the body dimensions of truck drivers are needed and such data are not presently available. This paper provides basic source data and an anthropometrical overview of the usefulness and limitations of existing data bases; discusses the influence of population factors, including age, sex, and demographic variables; and reviews population sampling problems. Heavy truck drivers as a whole appear to represent a physically different population from that of either the U.S. general population or other professional groups. Future anthropometric surveys must provide information for improved accommodation for the increasing range of physical size of users, and for obtaining data more useful to engineers involved in heavy truck interior cab design.
Technical Paper

Impact Injury to the Pregnant Female and Fetus in Lap Belt Restraint

1966-02-01
660801
Although it has been well established that the lap (seat) belt offers considerable protection against injury or death in crash environments, there has long been controversy over the injury potential to the pregnant female. This question is of importance in consideration of restraint and seat protective environments for both aircraft and automotive vehicles. Most of the 4 million pregnant women per year in the United States travel by automobile, with a large number traveling by Commercial Civil Aircraft or the Military Air Transport Service. Thus a sizeable population is involved. This combined study by the Civil Aeromedical Institute, F. A. A., 6571st Aeromedical Research Laboratory, Holloman AFB, and the University of Oklahoma School of Medicine, has been concerned with the clinical, experimental, and applied aspects.
Technical Paper

Biomechanical Evaluation of Steering Wheel Design

1982-02-01
820478
In a crash, impact against the steering assembly can be a major cause of serious and fatal injury to drivers. But the interrelationship between injury protection and factors of surface area, configuration, padding, relative position of the spokes, and number and stiffness of spokes and rim is not clear. This paper reports a series of high-G sled tests conducted with anesthetized animal subjects in 30 mph impacts at 30 G peaks. A total of eight tests were conducted, five utilizing pig subjects, one a female chimpanzee, one an anthropomorphic dummy, and one test with no subject. Instrumentation included closed circuit TV, a tri-axial load cell mounted between the steering wheel and column, seat belt load measurement, six Photo-Sonics 1000 fps motion picture cameras, and poloroid photography. Medical monitoring pre, during and post-impact was followed by gross and microscopic tissue examination.
Technical Paper

A Systems Engineering Evaluation of Passive Restraint Systems for Crash-Impact Attenuation in Air Transport Aircraft

1974-02-01
740044
Advanced crash-impact protective equipment and techniques which have application to crew and passenger crash safety in jet transport aircraft have been evaluated. Thirty-two state-of-the-art concepts have been analyzed from a systems engineering viewpoint with respect to several engineering, psychological, and medical disciplines. In order to provide a framework to determine the function level of each concept, an event-oriented flow chart of the crash and escape event has been prepared. The 17 events occurring during a crash are included, beginning with system installation and concluding with emergency evacuation of a disabled aircraft. Performance with respect to the events on the flow chart are rated in terms of hazards of system use, maintainability, reliability, human factors, and other technological considerations.
Technical Paper

Civil Aircraft Restraint Systems: State-of-the-Art Evaluation of Standards, Experimental Data, and Accident Experience

1977-02-01
770154
The importance of crashworthiness and the role of restraint systems in occupant impact protection in U.S. civil aircraft design is being increasingly recognized. Current estimates of the number of fatalities which could be prevented annually in survivable accidents range from 33 to 94%. This study reviews the development of existing Federal Aviation Administration restraint system standards from the first requirement for safety belts in the Air Commerce Regulations of 1926 to present 14 CFR 1.1. The FAA and industry standards are critically evaluated for Parts 23 (small airplanes), 25 (air transports), 27 (rotorcraft), and 29 (transport category rotorcraft). State-of-the-art developments, including an overview of previous accident experience, results of experimental studies, comparison with other standards, and primary data sources are provided.
Technical Paper

Occupant Impact Injury Tolerances for Aircraft Crashworthiness Design

1971-02-01
710406
Human impact injury and survival tolerance levels for various crash conditions are presented on the basis of currently available biomedical and biomechanical knowledge. Consideration of physical factors influencing trauma-including body orientation, restraint system, magnitude, distribution, and time duration of deceleration-are summarized, as well as tabulations and sources of data for both whole body and regional impact tolerances. These biological data concerning human impact tolerances are provided as guidelines for improved engineering design of general aviation crashworthiness.
X