Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Influence of Test Conditions on Protection Criteria in Side Impact

1996-11-01
962420
Numerous cadaver tests have been performed in the past to define the behaviour and tolerance of the thorax under side impact conditions. To take into account the various test conditions and measurements techniques or parameters, a lumped parameter model is used to reproduce these tests and thus to compute the protection criteria in the same way. The correlation between the calculated criteria and the observed injuries is then analysed as a basis for discussion of their consistency and relevance. The second part of the paper deals with the transposition of tolerance criteria to the Eurosid 1 dummy, using simulation tests under different conditions (impactor test, free-fall test, imposed velocity). The results show that this transposition depends on the test conditions, because of the limited biofidelity of the Eurosid 1 dummy.
Technical Paper

Relation Between Sacroilium and Other Pelvic Fractures Based on Real-World Automotive Accidents

2018-11-12
2018-22-0010
The study firstly aimed at looking whether sacroilium (SI) fractures could be sustained as unique pelvic injuries in side impact real world automotive accidents. Secondarily, the sacroilium fractures observed in conjunction with other pelvic fractures were analyzed to investigate the existence of injury association patterns. Two real world accident databases were searched for SI fractures. The occupants selected were front car passengers older than 16, involved in side, oblique or frontal impact, with AIS2+ pelvic injuries. In frontal impact, only the belted occupants were selected. The cases were sorted by the principal direction of force (dof) and the type of pelvic injury, namely SI, pubic rami, iliac wing, acetabulum, pubic symphysis, and sacrum injuries. The relation between SI and pubic rami injuries were investigated first. The first database is an accident database composed of cases collected in France by car manufacturers over a period of approximately 40 years.
Technical Paper

Investigations on the Belt-to-Pelvis Interaction in Case of Submarining

2006-11-06
2006-22-0003
This study focuses on the phenomenon of lap belt slip on the iliac spines of the pelvis, commonly named “submarining ”. The first objective was to compare the interaction between the pelvis and the lap belt for both dummies and Post Mortem Human Subjects (PMHS). The second objective was to identify parameters influencing the lap belt hooking by the pelvis. For that purpose, a hydraulic test device was developed in order to impose the tension and kinematics of the lap belt such that they mimic what occurs in frontal car crashes. The pelvis was firmly fixed on the frame of this sub-system test-rig, while the belt anchorages were mobile. Fourteen tests on four Post-Mortem Human Subjects (PMHS) and fifteen tests on the THOR NT, Hybrid III 50th and Hybrid III 95th percentile dummies were carried out. The belt tension was kept constant while a dynamic rotation was imposed on the belt anchorages.
Technical Paper

Assessment of the Pubic Force as a Pelvic Injury Criterion in Side Impact

2007-10-29
2007-22-0019
In the literature, injuries at the ischio or ilio pubic ramus level are reported to occur to approximately ¾ of the occupants injured at the pelvis during side impact. Assuming that the load going through the pubis was a good indicator of the ramus stress, the pubic force was widely accepted as a protection criterion for pelvic fractures on side impact dummies. However, no data regarding the actual loads going through the pubis is currently available in the literature for Post Mortem Human Subjects (PMHS) in dynamic conditions. The goal of this study was to determine pelvic biofidelity specifications in terms of load path, to evaluate the pertinence of the pubic force as a criterion, and to develop a pelvic injury risk curve as a function of the pubic force. For that purpose, a pubic load cell was developed for PMHS use, and 16 side impact tests were performed on 8 PMHS using boundary conditions similar to impactor tests and sled tests reported in the literature.
Technical Paper

Evaluation of Thoracic Deflection as an Injury Criterion for Side Impact Using a Finite Elements Thorax Model

2009-11-02
2009-22-0006
This study aims to investigate the relationship between the number of rib fractures and the thoracic deflection in side impact, and in particular its variability with respect to various loading configurations. The relevance of thoracic deflection as an injury criterion depends on the existence or not of this variability. Few studies were dedicated to this issue in the literature. First, a validation database was established, which covers different impact directions (frontal, lateral and oblique), different loading types (impactor, belt and airbag), and different injury levels (from the absence of, to presence of numerous ribs fractured). The HUMOS human body model was then modified and validated versus the database. Besides the typical validation in terms of global response, particular attention was paid to validate the model with respect to the ribcage strain profile, the occurrence of rib fractures and their locations.
Technical Paper

A Comparison of Sacroiliac and Pubic Rami Fracture Occurrences in Oblique Side Impact Tests on Nine Post Mortem Human Subjects

2015-11-09
2015-22-0002
The WorldSID dummy can be equipped with both a pubic and a sacroiliac joint (S-I joint) loadcell. Although a pubic force criterion and the associated injury risk curve are currently available and used in regulation (ECE95, FMVSS214), as of today injury mechanisms, injury criteria, and injury assessment reference values are not available for the sacroiliac joint itself. The aim of this study was to investigate the sacroiliac joint injury mechanism. Three configurations were identified from full-scale car crashes conducted with the WorldSID 50th percentile male where the force passing through the pubis in all three tests was approximately 1500 N while the sacroiliac Fy / Mx peak values were 4500 N / 50 Nm, 2400 N / 130 Nm, and 5300 N / 150 Nm, respectively. These tests were reproduced using a 150 kg guided probe impacting Post Mortem Human Subjects (PMHS) at 8 m/s, 5.4 m/s and 7.5 m/s.
Technical Paper

Thoracic Injury Criterion for Frontal Crash Applicable to All Restraint Systems

2003-10-27
2003-22-0015
For several years now, car manufacturers have made significant efforts in the field of thoracic protection. After first limiting the forces in the shoulder belt to 6 kN, these forces are now usually limited to 4 kN, with airbags intentionally designed to absorb the surplus of energy. If this technology is rewarded by a considerable improvement in safety on the road, it remains penalized by the usual biomechanical criteria, when calculated on the Hybrid III and if applied to all restraint systems. To remedy this problem a new criterion, valid in all the current restraint configurations (belt, airbag only or airbag and belt) is proposed. It is based on the measurement of the shoulder belt forces and of the central deflection and consequently is directly applicable to the current dummy model (Hybrid III). The use of shoulder belt forces allows the separation of the belt and airbag contributions to the deflection.
Technical Paper

The Effect of Angle on the Chest Injury Outcome in Side Loading

2009-11-02
2009-22-0014
Thoracic injury criteria and injury risk curves in side impact are based on impactor or sled tests, with rigid or padded surfaces while airbags are very common on current cars. Besides, the loading is generally pure lateral while real crashes or regulations can generate oblique loadings. Oblique tests were found in the literature, but no conclusion was drawn with regard to the effect of the direction on the injury outcome. In order to address these two limitations, a series of 17 side airbag tests were performed on Post Mortem Human Subjects (PMHS) at different severities and angles. The subjects were instrumented with accelerometers on the spine and strain gauges on the ribs. They were loaded by an unfolded airbag at different distances in pure lateral or 30 degrees forward. The airbag forces ranged from 1680 N to 6300 N, the injuries being up to 9 separated fractured ribs. This paper provides the test results in terms of physical parameters and injury outcome of the 17 subjects.
Technical Paper

Comparison of the Thorax Dynamic Responses of Small Female and Midsize Male Post Mortem Human Subjects in Side and Forward Oblique Impact Tests

2014-11-10
2014-22-0004
Despite the increasing knowledge of the thorax mechanics in impact loadings, the effects of inter-individual differences on the mechanical response are difficult to take into account. For example, the biofidelity corridors for the small female or large male are extrapolated from the midsize male corridors. The present study reports on the results of new tests performed on small female Post Mortem Human Subjects (PMHS), and compares them with test results on midsize male PMHS. Three tests in pure side impact and three tests in forward oblique impact were performed on the thorax of small female specimens. The average weight and stature were 43 kg and 1.58 m for the small female specimens. The initial speed of the impactor was 4.3 m/s. The mass and the diameter of the impactor face were respectively 23.4 kg and 130 mm. The instrumentation and methodology was the same as for the tests published in 2008 by Trosseille et al. on midsize male specimens.
Journal Article

Investigation of Potential Injury Patterns and Occupant Kinematics in Frontal Impact with PMHS in Reclined Postures

2023-06-27
2022-22-0001
The reality of the autonomous vehicle in a near future is growing and is expected to induce significant change in the occupant posture with respect to a standard driving posture. The delegated driving would allow sleeping and/or resting in a seat with a reclined posture. However, the data in the literature are rare on the body kinematics, human tolerance, and injury types in such reclined postures. The current study aims at increasing the knowledge in the domain and providing useful data to assess the relevance of the standard injury assessment tools such as anthropomorphic test devices or finite element human body models. For that purpose, a test series of three male Post-Mortem Human Subjects (PMHS) were performed in frontal impact at a 13.4 m/s delta V. The backseat inclination was 58 degrees with respect to the vertical axis. The semi-rigid seat developed by Uriot et al. (2015) was used with a stiffer seat ramp.
Technical Paper

Far Side Impact Injury Threshold Recommendations Based on 6 Paired WorldSID / Post Mortem Human Subjects Tests

2020-03-31
2019-22-0005
Far side has been identified in the literature as a potential cause of numerous injuries and fatalities. Euro NCAP developed a far side test protocol to be performed to assess adult protection. A monitoring phase was undertaken between January 2018 and December 2019, and the far side assessment will become part of the rating for all vehicles launched in 2020 onward. A test buck was developed and 6 paired WorldSID / Post Mortem Human Subjects (PMHS) were subjected to the test protocol proposed by Euro NCAP to contribute to the development of limits. The buck consisted of a rigid seat and a rigid central console covered with 50 mm of Ethafoam TM 180 with a density of 16 kg/m3. The buck was mounted on the sled with an angle of 75° between the X axis of the vehicle and the X axis of the sled. The peak head excursion was compared between PMHS and the WorldSID dummy. It was found reasonably similar. However, the dummy repeatability was found to be poor.
X