Refine Your Search

Search Results

Technical Paper

Dynamic Response and Mathematical Model of the Side Impact Dummy

1990-10-01
902321
A series of rigid wall tests have been conducted at three impact velocities to quantify the dynamic response of the Side Impact Dummy (SID) developed by US DOT. This paper reports the chest, pelvis and head responses of the dummy at various filter frequencies and describes the development and verification of the three-dimensional mathematical model of the Side Impact Dummy utilizing the rigid wall test results. The mathematical model uses the mass distribution and the linkage system of the current Part 572, Hybrid II dummy which forms the basic platform of the SID. The unique chest of the dummy is modeled by two systems of linkages simulating the rib cage and the jacket. Also included in the model is the internal hardware of the chest, e.g. a damper, rib stopper and a clavicle simulator at the upper spine. The material and linkage models are based on static and dynamic tests of the dummy components.
Technical Paper

Side Impact Modeling using Quasi-Static Crush Data

1991-02-01
910601
This paper describes the development of a three-dimensional lumped-mass structure and dummy model to study barrier-to-car side impacts. The test procedures utilized to develop model input data are also described. The model results are compared to crash test results from a series of six barrier-to-car crash tests. Sensitivity analysis using the validated model show the necessity to account for dynamic structural rate effects when using quasi-statically measured vehicle crush data.
Technical Paper

Comparitive Evaluation of the Dynamic Responses of the Hybrid II and the Hybrid III Dummies

1990-10-01
902318
Two 50th percentile anthropomorphic test devices are specified as alternate test devices for FMVSS 208 compliance testing. These test devices are commonly known as the Hybrid II and the Hybrid III dummies. The designs of the two dummies are different, representing the state-of-the-art in the time frame of their designs. The trajectory differences between the two dummies have been published in the literature, but response differences, e.g., HIC and chest acceleration are not available in the literature. To quantify response differences between the two dummies, a series of sled tests with open bucks and with bucks simulating vehicle interior were conducted with restrained dummies. Additional crash tests were also conducted with the two dummies. This paper reports on an analysis of the data from the above series of tests. The data indicate that in non-head contact simulations with belt restraint systems, Hybrid III HIC's are nearly 50% higher than Hybrid II HIC's.
Technical Paper

Biomechanical Analysis of Knee Impact in Frontal Collisions through Finite Element Simulations with a Full Human Body Model

2008-06-17
2008-01-1887
This study applies a detailed finite element model of the human body to simulate occupant knee impacts experienced in vehicular frontal crashes. The human body model includes detailed anatomical features of the head, neck, chest, thoracic and lumbar spine, abdomen, and lower and upper extremities. The material properties used in the model for each anatomic part of the human body were obtained from test data reported in the literature. The total human body model used in the current study has been previously validated in frontal and side impacts. Several cadaver knee impact tests representing occupants in a frontal impact condition were simulated using the previously validated human body model. Model impact responses in terms of force-time and acceleration-time histories were compared with test results. In addition, stress distributions of the patella, femur, and pelvis were reported for the simulated test conditions.
Technical Paper

Theoretical Evaluation of the Requirements of the 1999 Advanced Airbag SNPRM – Part One: Design Space Constraint Analysis

2001-03-05
2001-01-0165
In the 1999 Supplemental Notice for Proposed Rulemaking (SNPRM) for Advanced Airbags, the National Highway Traffic Safety Administration (NHTSA) sought comments on the maximum speed at which the high-speed, unbelted occupant test suite will be conducted, i.e., 48 kph vs. 40 kph. To help address this question, an analysis of constraints was performed via extensive mathematical modeling of a theoretical restraint system. First, math models (correlated with several existing physical tests) were used to predict the occupant responses associated with 336 different theoretical dual-stage driver airbag designs subjected to six specific Regulated and non-Regulated tests.
Technical Paper

A Theoretical, Risk Assessment Procedure for In-Position Drivers Involved in Full-Engagement Frontal Impacts

2003-03-03
2003-01-1354
A theoretical, mathematical, risk assessment procedure was developed to estimate the fraction of drivers that incurred head and thoracic AIS3+ injuries in full-engagement frontal crashes. The estimates were based on numerical simulations of various real-world events, including variations of crash severity, crash speed, level of restraint, and occupant size. The procedure consisted of four steps: (1) conduct the simulations of the numerous events, (2) use biomechanical equations to transform the occupant responses into AIS3+ risks for each event, (3) weight the maximum risk for each event by its real-world event frequency, and (4) sum the weighted risks. To validate the risk assessment procedure, numerous steps were taken. First, a passenger car was identified to represent average field performance.
Technical Paper

Head Injury Potential Assessment in Frontal Impacts by Mathematical Modeling

1994-11-01
942212
The potential of head injury in frontal barrier impact tests was investigated by a mathematical model which consisted of a finite element human head model, a four segments rigid dynamic neck model, a rigid body occupant model, and a lumped-mass vehicle structure model. The finite element human head model represents anatomically an average adult head. The rigid body occupant model simulates an average adult male. The structure model simulates the interior space and the dynamic characteristics of a vehicle. The neck model integrates the finite element human head to the occupant body to give a more realistic kinematic head motion in a barrier crash test. Model responses were compared with experimental cadaveric data and vehicle crash data for the purpose of model validation to ensure model accuracy. Model results show a good agreement with those of the tests.
Technical Paper

Critical Comparisons of US and European Dynamic Side Impacts

1997-02-24
970128
Global engineering is increasingly becoming a practice within the automotive industry. Due to added engineering and manufacturing benefits, more and more new vehicles are being developed with common structure to meet the consumer needs in many local regions. While vehicle development and manufacturing process is becoming global, automotive safety regulations in various parts of the world have not been as uniform. A good example is the differing requirements for dynamic side impact protection of new vehicles. United States National Highway Traffic Safety Administration (NHTSA) and European Union (EU) have each produced their own distinct test procedures such as, different barrier faces, impact configurations, and anthropomorphic test devices (dummies). Although both test procedures have the same final objective estimate occupant responses in side impacts, they differ greatly in execution and emphasis on occupant response requirements.
Technical Paper

Derivation and Evaluation of a Provisional, Age-Dependent, AIS3+ Thoracic Risk Curve for Belted Adults in Frontal Impacts

2005-04-11
2005-01-0297
An age-dependent, serious-to-fatal (AIS3+), thoracic risk curve was derived and evaluated for frontal impacts. The study consisted of four parts. In Part 1, two datasets of post mortem human subjects (PMHS) were generated for statistical and sensitivity analyses. In Part 2, logistic regression analyses were conducted. For each dataset, two statistical methods were applied: (1) a conventional maximum likelihood method, and (2) a modified maximum likelihood method. Therefore, four statistical models were derived — one for each dataset/statistical method combination. For all of the resulting statistical models (risk curves), the linear combination of maximum normalized sternum deflection and age of the PMHS was identified as a feasible predictor of AIS3+ thoracic injury probability. In Part 3, the PMHS-based risk curves were transformed into test-dummy-based risk curves. In Part 4, validation studies were conducted for each risk curve.
Technical Paper

Correlation of Driver Inflator Predictor Variables with the Viscous Criterion for the Mid-Sized Male, Instrumented Test Dummy in the Chest-on-Module Condition

1999-03-01
1999-01-0763
A new inflator specification, the “inflator thrust variable,” was developed to better explain measured mid-sized male, instrumented test dummy responses in the chest-on-module test condition. Specifically, controlled laboratory experiments were conducted with non-production, driver airbag modules with inflators of various outputs and gas constituents in an effort to assess their effects on a pertinent occupant response. Regression analyses showed that the inflator thrust variable is a better predictor of the observed variation in peak viscous criterion responses than either peak tank pressure or the related pressure rise rate when inflators of differing gas composition were compared.
Technical Paper

Injury Risk Curves for Children and Adults in Frontal and Rear Collisions

1997-11-12
973318
This paper describes the development of injury risk curves for measurements made with the CRABI and Hybrid III family of biofidelic child and adult dummies that are used to evaluate restraint systems in frontal and rear-end collision simulations. Injury tolerance data are normalized for size and strength considerations. These data are analyzed to give normalized injury risk curves for neck tension, neck extension moment, combined neck tension and extension moment, sternal compression, the rate of sternal compression, and the rate of abdominal compression for children and adults. Using these injury risk curves dummy response limits can be defined for prescribed injury risk levels. The injury risk levels associated with the various injury assessment reference values currently used with the CRABI and Hybrid III family of dummies are noted.
Technical Paper

Biomechanics of 4-Point Seat Belt Systems in Frontal Impacts

2003-10-27
2003-22-0017
The biomechanical behavior of 4-point seat belt systems was investigated through MADYMO modeling, dummy tests and post mortem human subject tests. This study was conducted to assess the effect of 4-point seat belts on the risk of thoracic injury in frontal impacts, to evaluate the ability to prevent submarining under the lap belt using 4-point seat belts, and to examine whether 4-point belts may induce injuries not typically observed with 3-point seat belts. The performance of two types of 4-point seat belts was compared with that of a pretensioned, load-limited, 3-point seat belt. A 3-point belt with an extra shoulder belt that “crisscrossed” the chest (X4) appeared to add constraint to the torso and increased chest deflection and injury risk. Harness style shoulder belts (V4) loaded the body in a different biomechanical manner than 3-point and X4 belts.
Technical Paper

Predictions of AIS3+ Thoracic Risks for Belted Occupants in Full-Engagement, Real-World Frontal Impacts: Sensitivity to Various Theoretical Risk Curves

2003-03-03
2003-01-1355
A new, AIS3+ thoracic risk equation based on chest deflection was derived and assessed for drivers subjected to concentrated (belt-like) loading. The new risk equation was derived from analysis of an existing database of post mortem human subjects in controlled, laboratory sled tests. Binary logistic regression analysis was performed on a subset of the data, namely, 25th-75th percentile men (by weight) from 36-65 years old whose thoracic deformation patterns were due to concentrated (belt-like) loading. Other subsets of data had insufficient size to conduct the analysis. The resulting thoracic risk equation was adjusted to predict the AIS3+ thoracic risks for average-aged occupants in frontal crashes (i.e., 30 years old). Biomechanical scaling was used to derive the corresponding relationships for the small female and large male dummies. The new thoracic risk equations and three other sets of existing equations were evaluated as predictors of real-world crash outcomes.
Technical Paper

Improved Neck Injury Risk Curves for Tension and Extension Moment Measurements of Crash Dummies

2000-01-01
2000-01-SC05
This paper describes improvements made to the injury risk curves for peak neck tension, peak neck extension moment and a linear combination of tension and extension moment that produce peak stress in the anterior-longitudinal ligament at the head-to-neck junction. Data from previously published experiments that correlated neck injuries to 10-week-old, anesthetized pigs and neck response measurements of a 3-year-old child dummy that were subjected to similar airbag deployments are updated and used to generate Normal probability curves for the risk of AIS ≥ 3 neck injury for the 3-year-old child. These curves are extended to other sizes and ages by normalizing for neck size. Factors for percent of muscle tone and ligamentous failure stress as a function of age are incorporated in the risk analysis. The most sensitive predictor of AIS ≥ 3 neck injury for this data set is peak neck tension.
Technical Paper

The Influence of Superficial Soft Tissues and Restraint Condition on Thoracic Skeletal Injury Prediction

2001-11-01
2001-22-0008
The purpose of this study is to evaluate the hard tissue injury -predictive value of various thoracic injury criteria when the restraint conditions are varied. Ten right-front passenger human cadaver sled tests are presented, all of which were performed at 48 km/h with nominally identical sled deceleration pulses. Restraint conditions evaluated are 1) force-limiting belt and depowered airbag (4 tests), 2) non-depowered airbag with no torso belt (3 tests), and 3) standard belt and depowered airbag (3 tests). Externally measured chest compression is shown to correspond well with the pre sence of hard tissue injury, regardless of restraint condition, and rib fracture onset is found to occur at approximately 25% chest compression. Peak acceleration and the average spinal acceleration measured at the first and eighth or ninth thoracic vertebrae are shown to be unrelated to the presence of injury, though clear variations in peaks and time histories among restraint conditions can be seen.
Technical Paper

Opportunities for Injury Reduction in US Frontal Crashes: An Overview by Structural Engagement, Vehicle Class, and Occupant Age

2013-11-11
2013-22-0017
An overview NASS study of US frontal crashes was performed to investigate crash involvement, driver injury distributions and rates in airbag equipped vehicles by vehicle class and structural engagement. Frontal crash bins were based on taxonomy of structural engagement, i.e., Full Engagement, Offset, Between Rails and Corner impact crashes. A new classification of Corner impacts included frontal small overlap impacts with side damage as coded by NASS CDS. Belted drivers of two age groups, between 16 and 50 and over 50 years old, were considered. Vehicles were grouped into light and heavy passenger cars and lights trucks, and vans. A method to identify and address overly influential NASS weights was developed based on considerations of weighting factor statistics. The new taxonomy, with an expanded definition of corner impacts, allowed a more comprehensive classification of frontal crash modes.
Technical Paper

The Field Relevance of NHTSA's Oblique Research Moving Deformable Barrier Tests

2014-11-10
2014-22-0007
A small overlap frontal crash test has been recently introduced by the Insurance Institute for Highway Safety in its frontal rating scheme. Another small overlap frontal crash test is under development by the National Highway Traffic Safety Administration (NHTSA). Whereas the IIHS test is conducted against a fixed rigid barrier, the NHTSA test is conducted with a moving deformable barrier that overlaps 35% of the vehicle being tested and the angle between the longitudinal axis of the barrier and the longitudinal axis of the test vehicle is 15 degrees. The field relevance of the IIHS test has been the subject of a paper by Prasad et al. (2014). The current study is aimed at examining the field relevance of the NHTSA test.
Technical Paper

Biomechanical Analysis of Human Abdominal Impact Responses and Injuries through Finite Element Simulations of a Full Human Body Model

2005-11-09
2005-22-0016
Human abdominal response and injury in blunt impacts was investigated through finite element simulations of cadaver tests using a full human body model of an average-sized adult male. The model was validated at various impact speeds by comparing model responses with available experimental cadaver test data in pendulum side impacts and frontal rigid bar impacts from various sources. Results of various abdominal impact simulations are presented in this paper. Model-predicted abdominal dynamic responses such as force-time and force-deflection characteristics, and injury severities, measured by organ pressures, for the simulated impact conditions are presented. Quantitative results such as impact forces, abdominal deflections, internal organ stresses have shown that the abdomen responded differently to left and right side impacts, especially in low speed impact.
Technical Paper

Interactions of Out-of-Position Small-Female Surrogates with a Depowered Driver Airbag

2008-11-03
2008-22-0008
The objectives of this study were to examine the response, repeatability, and injury predictive ability of the Hybrid III small-female dummy to static out-of-position (OOP) deployments using a depowered driver-side airbag. Five dummy tests were conducted in two OOP configurations by two different laboratories. The OOP configurations were nose-on-rim (NOR) and chest-on-bag (COB). Four cadaver tests were conducted using unembalmed small-female cadavers and the same airbags used in the dummy tests under similar OOP conditions. One cadaver test was designed to increase airbag loading of the face and neck (a forehead-on-rim, or FOR test). Comparison between the dummy tests of Lab 1 and of Lab 2 indicated the test conditions and results were repeatable. In the cadaver tests no skull fractures or neck injuries occurred. However, all four cadavers had multiple rib fractures.
Technical Paper

Derivation and Theoretical Assessment of a Set of Biomechanics-based, AIS2+ Risk Equations for the Knee-Thigh-Hip Complex

2006-11-06
2006-22-0005
A set of risk equations was derived to estimate the probability of sustaining a moderate-to-serious injury to the knee-thigh-hip complex (KTH) in a frontal crash. The study consisted of four parts. First, data pertaining to knee-loaded, whole-body, post-mortem human subjects (PMHS) were collected from the literature, and the attendant response data (e.g., axial compressive load applied to the knee) were normalized to those of a mid-sized male. Second, numerous statistical analyses and mathematical constructs were used to derive the set of risk equations for adults of various ages and genders. Third, field data from the National Automotive Sampling System (NASS) were analyzed for subsequent comparison purposes.
X