Refine Your Search

Topic

Search Results

Journal Article

Effect of Fuel and Thermal Stratifications on the Operational Range of an HCCI Gasoline Engine Using the Blow-Down Super Charge System

2010-04-12
2010-01-0845
In order to extend the HCCI high load operational limit, the effects of the distributions of temperature and fuel concentration on pressure rise rate (dP/dθ) were investigated through theoretical and experimental methods. The Blow-Down Super Charge (BDSC) and the EGR guide parts are employed simultaneously to enhance thermal stratification inside the cylinder. And also, to control the distribution of fuel concentration, direct fuel injection system was used. As a first step, the effect of spatial temperature distribution on maximum pressure rise rate (dP/dθmax) was investigated. The influence of the EGR guide parts on the temperature distribution was investigated using 3-D numerical simulation. Simulation results showed that the temperature difference between high temperature zone and low temperature zone increased by using EGR guide parts together with the BDSC system.
Journal Article

Analysis of Port Injected Fuel Spray Under Cross Wind Using 2-D Measurement Techniques

2010-09-28
2010-32-0064
In a motorcycle gasoline engine, the port fuel injection system is rapidly spread. Compared to an automotive engine, the injected fuel does not impinge on the intake valve due to space restriction to install the injector. In addition, as the air flow inside the intake pipe may become very fast and has large cycle-to-cycle variation, it is not well found how the injector should be installed in the intake pipe to prepare “good” fuel-air mixture inside the intake pipe. In this study, the formation process of the fuel-air mixture is measured by using ILIDS system that is a 2-D droplets' size and velocity measurement system with high spatial resolution. Experiments with changing conditions such as flow speed and injection direction are carried out. As a result, the effects of injection direction, ambient flow speed and wall roughness on the fuel-air mixture formation process was examined, considering the three conditions of cold start, light to medium load operation and high load operation.
Technical Paper

3D-CFD Full Engine Simulation Application for Post-Oxidation Description

2021-09-05
2021-24-0016
The introduction of real driving emissions cycles and increasingly restrictive emissions regulations force the automotive industry to develop new and more efficient solutions for emission reductions. In particular, the cold start and catalyst heating conditions are crucial for modern cars because is when most of the emissions are produced. One interesting strategy to reduce the time required for catalyst heating is post-oxidation. It consists in operating the engine with a rich in-cylinder mixture and completing the oxidation of fuel inside the exhaust manifold. The result is an increase in temperature and enthalpy of the gases in the exhaust, therefore heating the three-way-catalyst. The following investigation focuses on the implementation of post-oxidation by means of scavenging in a four-cylinder, turbocharged, direct injection spark ignition engine. The investigation is based on detailed measurements that are carried out at the test-bench.
Technical Paper

Combustion Enhancement in a Gas Engine Using Low Temperature Plasma

2020-04-14
2020-01-0823
Low temperature plasma ignition has been proposed as a new ignition technique as it has features of good wear resistance, low energy release and combustion enhancement. In the authors’ previous study, lean burn limit could be extended slightly by low temperature plasma ignition while the power supply’s performance with steep voltage rising with time (dV/dt), showed higher peak value of the rate of heat release and better indicated thermal efficiency. In this study, basic study of low temperature plasma ignition system was carried out to find out the reason of combustion enhancement. Moreover, the durability test of low temperature plasma plug was performed to check the wear resistance.
Technical Paper

Stratification of Swirl Intensity in the Axial Direction for Control of Turbulence Generation During the Compression Stroke

1991-02-01
910261
Control of turbulence during the compression stroke is suggested by both theoretical calculations and experimental results obtained with an LDV measurement in a motored engine. The authors have found experimentally that when an axial distribution of swirl intensity exists, a large-scale annular vortex is formed inside the cylinder during the compression stroke and this vortex generates and transports turbulence energy. A numerical calculation is adopted to elucidate this phenomenon. Then, an axial stratification of swirl intensity is found to generate a large-scale annular vortex during the compression stroke by an interaction between the piston motion and the axial pressure gradient. The initial swirl profile is parametrically varied to assess its effect on the turbulence parameters. Among calculated results, turbulence energy is enhanced strongest when the swirl intensity is highest at the piston top surface and lowest at the bottom surface of the cylinder head.
Technical Paper

An Experimental Study of a Gasoline HCCI Engine Using the Blow-Down Super Charge System

2009-04-20
2009-01-0496
The objective of this study is to extend the high load operation limit of a gasoline HCCI engine. A new system extending the high load HCCI operation limit was proposed, and the performance of the system was experimentally demonstrated. The proposed system consists of two new techniques. The first one is the “Blow-down super charging (BDSC) system”, in which, EGR gas can be super charged into a cylinder during the early stage of compression stroke by using the exhaust blow-down pressure wave from another cylinder phased 360 degrees later/earlier in the firing order. The other one is “EGR guide” for generating a large thermal stratification inside the cylinder to reduce the rate of in-cylinder pressure rise (dP/dθ) at high load HCCI operation. The EGR guides consist of a half-circular part attached on the edge of the exhaust ports and the piston head which has a protuberant surface to control the mixing between hot EGR gas and intake air-fuel mixture.
Technical Paper

Quantitative 2-D Gas Concentration Measurement by Laser-Beam Scanning Technique with Combination of Absorption and Fluorescense

2003-10-27
2003-01-3153
In order to measure the spatial distribution of fuel jet concentration quantitatively, a technique combining methods of fluorescence with absorption was developed. LIF method can obtain the spatial fuel distribution qualitatively, but quantitative measurement is difficult. Meanwhile, laser-beam absorption method can quantitatively obtain the integrated jet concentration on the light-path. In addition, scanning the laser-beam allows for a quasi 2-D quantitative measurement of the jet concentration. Firstly, in this study, this measurement system was tested in a homogeneously charged field while varying the dopant NO2 concentration, the laser-beam scanning speed, and the ambient pressure. As a result, some data-correction techniques were developed to produce a quantitative measurement. Secondly, this system was applied to gaseous jet fields in a constant volume bomb.
Technical Paper

Mixture Formation Analysis of a Schnurle-Type Two-Stroke Gasoline DI Engine

2001-03-05
2001-01-1091
Because the two-stroke gasoline engine has a feature of high power density, it might become a choice for automobiles' power train if the high HC exhaust emissions and high fuel consumption rate could be improved. As the GDI technology is quite effective for two-stroke engines, a Schnurle-type small engine was modified to a GDI engine, and its performance was tested. Also, numerical analysis of the mixture-formation process was carried out. Results indicated it was possible to reduce both the HC emissions and fuel consumption drastically with the same maximum power as a carbureted engine at WOT condition. However, misfiring in light load condition was left unresolved. Numerical analysis clarified the process of how the mixture formation got affected by the injector location, injection timing, and gas motion.
Technical Paper

Numerical Analysis of Mixture Preparation in a Reverse Uniflow-Type Two-Stroke Gasoline DI Engine

2001-12-01
2001-01-1815
The authors have been engaged in developing a new-generation two-stroke gasoline engine which could be employed ultimately for automobiles. By investigating the defects of the Schnurle-type two-stroke gasoline engine, a reverse uniflow-type direct injection engine has been developed and built. The newly introduced system employs stratified charge combustion in light to medium load conditions by using the technology already developed for the four-stroke direct injection gasoline engines while it can supply the maximum power output by using a super-charger and attaining homogeneous combustion. Engine performance is being tested experimentally. In order to analyze the performance test results, numerical analysis of in-cylinder phenomena, such as gas-exchange, gas motion, fuel spray formation, and mixture formation is carried out in this paper.
Technical Paper

Research and Development of a Direct Injection Stratified Charge Rotary Engine with a Pilot Flame Ignition System

2001-12-01
2001-01-1844
A Direct Injection Stratified Charge Rotary Engine ( DISC-RE ) with a pilot flame ignition system has been studied to find the possibility of simultaneous reductions of fuel consumption rate and HC exhaust gas emissions. Firstly, combustion characteristics in a model combustion chamber, which simulates the DISC-RE were examined from the viewpoints of calculation and experiment. The high speed photography and the indicated pressure analysis were experimentally performed while numerical calculations of the mixture formation and combustion processes were also carried out. As a result, it has been found that the combustion using the pilot flame ignition system is much activated and a better ignitability is attained under lean mixtures than using a spark ignition system. Secondly, a single rotor with 650 cc displacement DISC-RE was built as a prototype. Combustion characteristics and its performance were tested using a combustion analyzer.
Technical Paper

Experimentally Evaluated Spray Model for a Swirl-Type Injector

2002-10-21
2002-01-2696
To clarify the fuel spray formation process for a swirl-type injector, numerical analyses using both VOF (Volume Of Fluid) model and DDM (Discrete Droplet Model) method are carried out. VOF model is used to simulate the two-phase flow inside the injector and also the liquid film formation process outside the nozzle, while DDM is used to simulate a free fuel spray in a constant-volume chamber using initial conditions deduced by empirical equations or calculated results of VOF model. As a result, fairly good agreement of spray characteristics, such as the spray shape and the tip penetration between the experiment and calculation can be obtained by adopting initial conditions calculated by VOF model. However, improvements of droplet breakup models and of two-phase flow calculation method would be required to achieve quantitatively good agreement.
Technical Paper

Driving Cycle Simulation of a Vehicle with Gasoline Homogeneous Charge Compression Ignition Engine Using a Low-RON Fuel

2016-10-17
2016-01-2297
An improvement of thermal efficiency of internal combustion engines is strongly required. Meanwhile, from the viewpoint of refinery, CO2 emissions and gasoline price decrease when lower octane gasoline can be used for vehicles. If lower octane gasoline is used for current vehicles, fuel consumption rate would increase due to abnormal combustion. However, if a Homogeneous Charge Compression Ignition (HCCI) engine were to be used, the effect of octane number on engine performance would be relatively small and it has been revealed that the thermal efficiency is almost unchanged. In this study, the engine performance estimation of HCCI combustion using lower octane gasoline as a vision of the future engine was achieved. To quantitatively investigate the fuel consumption performance of a gasoline HCCI engine using lower octane fuel, the estimation of fuel consumption under different driving test cycles with different transmissions is carried out using 1D engine simulation code.
Technical Paper

Analyses of Cycle-to-Cycle Variation of Combustion and In-Cylinder Flow in a Port Injection Gasoline Engine Using PIV and PLIF Techniques

2017-10-08
2017-01-2213
Reduction in the cycle-to-cycle variation (CCV) of combustion in internal combustion engines is required to reduce fuel consumption, exhaust emissions, and improve drivability. CCV increases at low load operations and lean/dilute burn conditions. Specifically, the factors that cause CCV of combustion are the cyclic variations of in-cylinder flow, in-cylinder distributions of fuel concentration, temperature and residual gas, and ignition energy. However, it is difficult to measure and analyze these factors in a production engine. This study used an optically accessible single-cylinder engine in which combustion and optical measurements were performed for 45 consecutive cycles. CCVs of the combustion and in-cylinder phenomena were investigated for the same cycle. Using this optically accessible engine, the volume inside the combustion chamber, including the pent-roof region can be observed through a quartz cylinder.
Technical Paper

A Study of Control Strategy for Combution Mode Switching Between HCCI and SI With the Blowdown Supercharging System

2012-04-16
2012-01-1122
To find an ignition and combustion control strategy in a gasoline-fueled HCCI engine equipped with the BlowDown SuperCharging (BDSC) system which is previously proposed by the authors, a one-dimensional HCCI engine cycle simulator capable of predicting the ignition and heat release of HCCI combustion was developed. The ignition and the combustion models based on Livengood-Wu integral and Wiebe function were implemented in the simulator. The predictive accuracy of the developed simulator in the combustion timing, combustion duration and heat release rate was validated by comparing to experimental results. Using the developed simulator, the control strategy for the engine operating mode switching between HCCI and SI combustion was explored with focus attention on transient behaviors of air-fuel ratio, A/F, and gas-fuel ratio, G/F.
Technical Paper

Numerical and Experimental Analysis of Abnormal Combustion in a SI Gasoline Engine with a Re-Entrant Piston Bowl and Swirl Flow

2022-01-09
2022-32-0038
Some SI (spark-ignition) engines fueled with gasoline for industrial machineries are designed based on the conventional diesel engine in consideration of the compatibility with installation. Such diesel engine-based SI engines secure a combustion chamber by a piston bowl instead of a pent-roof combustion chamber widely applied for SI engines for automobiles. In the development of SI engines, because knocking deteriorates the power output and the thermal efficiency, it is essential to clarify causes of knocking and predict knocking events. However, there has been little research on knocking in diesel engine-based SI engines. The purpose of this study is to elucidate knocking phenomena in a gasoline engine with a re-entrant piston bowl and swirl flow numerically and experimentally. In-cylinder visualization and pressure analysis of knock onset cycles have been experimentally performed. Locations of autoignition have been predicted by 3D-CFD analysis with detailed chemical reactions.
Technical Paper

Analysis of Cylinder to Cylinder Variations in a Turbocharged Spark Ignition Engine at lean burn operations

2022-01-09
2022-32-0044
In recent years, the improvement in the fuel efficiency and reduction in CO2 emission from internal combustion engines has been an urgent issue. The lean burn technology is one of the key technologies to improve thermal efficiency of SI engines. However, combustion stability deteriorates at lean burn operations. The reduction in cycle-to-cycle and cylinder-to-cylinder variations is one of the major issues to adapt the lean burn technique for production engines. However, the details of the causes and mechanisms for the combustion variations under the lean burn operations have not been cleared yet. The purpose of this study is to control cylinder to cylinder combustion variation. A conventional turbocharged direct injection SI engine was used as the test engine to investigate the effect of engine control parameters on the cylinder to cylinder variations. The engine speed is set at 2200 rpm and the intake pressure is set at 58, 78, 98 kPa respectively.
Technical Paper

Numerical Investigation of the Effect of Engine Speed and Delivery Ratio on the High-Speed Knock in a Small Two-Stroke SI Engine

2022-01-09
2022-32-0080
Knocking occurs within the high-speed range of small two-stroke engines used in handheld work equipment. High-speed knock may be affected by the engine speed and delivery ratio. However, evaluation of these factors independently using experimental methods is difficult. Therefore, in this study, these factors were independently evaluated using numerical calculations. The purpose of this study was to clarify the mechanism by which the intensity of high-speed knocking that occurs in small two-stroke engines becomes stronger. The results suggest that temperature inhomogeneity due to insufficient mixing of fresh air and previously burned gas may induce high-speed knocking in the operating range at high engine speeds.
Technical Paper

Measurement of the Local Gas Temperature at Autoignition Conditions Inside the Combustion Chamber Using a Two-Wire Thermocouple

2006-04-03
2006-01-1344
The phenomenon of autoignition is an important aspect of HCCI and knock, hence reliable information on local gas temperature in a combustion chamber must be obtained. Recently, several studies have been conducted by using laser techniques such as CARS. It has a high spatial resolution, but has proven difficult to apply in the vicinity of combustion chamber wall and requires special measurement skills. Meanwhile, a thermocouple is useful to measure local gas temperature even in the vicinity of wall. However, a traditional one-wire thermocouple is not adaptable to measure the in-cylinder gas temperature due to slow response. The issue of response can be overcome by adopting a two-wire thermocouple. The two-wire thermocouple is consisted of two fine wire thermocouples with different diameter hence it is possible to determine the time constant using the raw data from each thermocouple.
Technical Paper

A Trial of Improving Thermal Efficiency by Active Piston Control -Speed Control Effect of Combustion Chamber Volume Variation on Thermal Efficiency-

2004-09-27
2004-32-0080
In reciprocating internal combustion engines, the piston stops in a moment at top dead center (TDC), so there exists a necessary time to proceed combustion. However more slowing piston motion around TDC, does it have a possibility to produce the following effects? The slowed piston motion may expedite combustion proceed and increase cylinder pressure. This may lead to an increase of degree of constant volume. As a result, thermal efficiency may be improved. In order to verify this idea, two types of engines were tested. The first engine attained high cylinder pressure as expected. The P-V diagram formed an almost ideal Otto cycle. However, this did not contribute to the improvement in the thermal efficiency. Then the second engine with further slower piston motion by active piston control was tested in order to examine the above reason.
Technical Paper

A Study on Combustion Characteristics of DISC Rotary Engine Using a Model Combustion Chamber

1994-03-01
941028
A model combustion chamber of Wankel type rotary engine was employed to study the DISC RE system. A two-stroke Diesel engine's cylinder head was replaced with this combustion chamber to simulate temporal change of air flow and pressure fields inside the chamber as an actual engine. The base engine was motorized to operate as a continuous rapid compression and expansion machine. Pilot fuel spray was injected onto a glow plug to form a pilot flame and it ignites the main fuel spray. The ignitability of pilot fuel, mixture formation process, ignition process of main fuel by pilot flame and the effect of pilot and main injection timings on combustion characteristics were examined.
X