Refine Your Search

Search Results

Viewing 1 to 12 of 12
Technical Paper

Biomechanical Analysis of Knee Impact in Frontal Collisions through Finite Element Simulations with a Full Human Body Model

2008-06-17
2008-01-1887
This study applies a detailed finite element model of the human body to simulate occupant knee impacts experienced in vehicular frontal crashes. The human body model includes detailed anatomical features of the head, neck, chest, thoracic and lumbar spine, abdomen, and lower and upper extremities. The material properties used in the model for each anatomic part of the human body were obtained from test data reported in the literature. The total human body model used in the current study has been previously validated in frontal and side impacts. Several cadaver knee impact tests representing occupants in a frontal impact condition were simulated using the previously validated human body model. Model impact responses in terms of force-time and acceleration-time histories were compared with test results. In addition, stress distributions of the patella, femur, and pelvis were reported for the simulated test conditions.
Technical Paper

SID-IIs Beta+-Prototype Dummy Biomechanical Responses

1998-11-02
983151
This paper presents the results of biomechanical testing of the SID-IIs beta+-prototype dummy by the Occupant Safety Research Partnership. The purpose of this testing was to evaluate the dummy against its previously established biomechanical response corridors for its critical body regions. The response corridors were scaled from the 50th percentile adult male corridors defined in International Standards Organization Technical Report 9790 to corridors for a 5th percentile adult female, using established International Standards Organization procedures. Tests were performed for the head, neck, shoulder, thorax, abdomen and pelvis regions of the dummy. Testing included drop tests, pendulum impacts and sled tests. The biofidelity of the SID-IIs beta+-prototype was calculated using a weighted biomechanical test response procedure developed by the International Standards Organization.
Technical Paper

An Algorithm to Calculate Chest Deflection from 3D IR-TRACC

2016-04-05
2016-01-1522
A three dimensional IR-TRACC (Infrared Telescope Rod for Assessment of Chest Compression) was designed for the Test Device for Human Occupant Restraint (THOR) in recent years to measure chest deflections. Due to the design intricateness, the deflection calculation from the measurements is sophisticated. An algorithm was developed in this paper to calculate the three dimensional deflections of the chest. The algorithm calculates the compression and also converts the results to the local spine coordinate system so that it can correlate with the Post Mortem Human Subject (PMHS) measurements for injury calculation. The method was also verified by a finite element calculation for accuracy, comparing the calculation from the corresponding model output and the direct point to point measurements. In addition, the IR-TRACC calibration methods are discussed in this paper.
Technical Paper

Development of an Advanced ATD Thorax System for Improved Injury Assessment in Frontal Crash Environments

1992-11-01
922520
Injuries to the thorax and abdomen comprise a significant percentage of all occupant injuries in motor vehicle accidents. While the percentage of internal chest injuries is reduced for restrained front-seat occupants in frontal crashes, serious skeletal chest injuries and abdominal injuries can still result from interaction with steering wheels and restraint systems. This paper describes the design and performance of prototype components for the chest, abdomen, spine, and shoulders of the Hybrid III dummy that are under development to improve the capability of the Hybrid III frontal crash dummy with regard to restraint-system interaction and injury-sensing capability.
Technical Paper

Age Effects on Thoracic Injury Tolerance

1996-11-01
962421
It is well known that the ability of the human body to withstand trauma is a function of its inherent strength, i.e., the strength of the bones and soft tissues. Yet, the properties of the bones and tissues change as a function of the individual's age. In this paper age effects on thoracic injury tolerances are studied by analyzing the mechanical properties of human bones and soft tissues and by examining experimental results found in the literature of thoracic impact tests to human cadavers. This work suggests that the adult age range can be divided into three age groups. Using piece-wise linear regression analyses, it has been determined that the reduction in injury tolerance from the “young” age group to the “elderly” group is approximately 20% under blunt frontal impact loading conditions and is as much as 70% under belt loading conditions.
Technical Paper

Lateral Impact-An Analysis of the Statistics in the NCSS

1985-12-01
851727
Data from the National Crash Severity Study (NCSS) has been analyzed with respect to lateral impacts. Accident variables, vehicle variables, and occupant variables, and their interactions have been considered. Emphasis has been placed on occupant variables, especially occupant injury patterns. This report is mainly a compendium of the data, including a comparison of the NCSS statistics with those from France, Germany, and Great Britain. Overall, these lateral impact statistics are quite similar to results of other field accident studies, which is an interesting observation given the diverse vehicle and driver populations and the differing traffic situations experienced by those populations. Conclusions have been drawn regarding typical lateral impact situations and the effectiveness of seatbelts in lateral impacts.
Technical Paper

Response Ratio Development for Lateral Pendulum Impact with Porcine Thorax and Abdomen Surrogate Equivalents

2020-03-31
2019-22-0007
There has been recent progress over the past 10 years in research comparing 6-year-old thoracic and abdominal response of pediatric volunteers, pediatric post mortem human subjects (PMHS), animal surrogates, and 6-year-old ATDs. Although progress has been made to guide scaling laws of adult to pediatric thorax and abdomen data for use in ATD design and development of finite element models, further effort is needed, particularly with respect to lateral impacts. The objective of the current study was to use the impact response data of age equivalent swine from Yaek et al. (2018) to assess the validity of scaling laws used to develop lateral impact response corridors from adult porcine surrogate equivalents (PSE) to the 3-year-old, 6-year-old, and 10-year-old for the thorax and abdominal body regions.
Technical Paper

Side Impact Assessment and Comparison of Appropriate Size and Age Equivalent Porcine Surrogates to Scaled Human Side Impact Response Biofidelity Corridors

2018-11-12
2018-22-0009
Analysis and validation of current scaling relationships and existing response corridors using animal surrogate test data is valuable, and may lead to the development of new or improved scaling relationships. For this reason, lateral pendulum impact testing of appropriate size cadaveric porcine surrogates of human 3-year-old, 6-year-old, 10-year-old, and 50th percentile male age equivalence, were performed at the thorax and abdomen body regions to compare swine test data to already established human lateral impact response corridors scaled from the 50th percentile human adult male to the pediatric level to establish viability of current scaling laws. Appropriate Porcine Surrogate Equivalents PSE for the human 3-year-old, 6-year-old, 10-year-old, and 50th percentile male, based on whole body mass, were established. A series of lateral impact thorax and abdomen pendulum testing was performed based on previously established scaled lateral impact assessment test protocols.
Technical Paper

Thoracic Response of Belted PMHS, the Hybrid III, and the THOR-NT Mid-Sized Male Surrogates in Low-Speed, Frontal Crashes

2006-11-06
2006-22-0009
Injury to the thorax is the predominant cause of fatalities in crash-involved automobile occupants over the age of 65, and many elderly-occupant automobile fatalities occur in crashes below compliance or consumer information test speeds. As the average age of the automotive population increases, thoracic injury prevention in lower severity crashes will play an increasingly important role in automobile safety. This study presents the results of a series of sled tests to investigate the thoracic deformation, kinematic, and injury responses of belted post-mortem human surrogates (PMHS, average age 44 years) and frontal anthropomorphic test devices (ATDs) in low-speed frontal crashes. Nine 29 km/h (three PMHS, three Hybrid III 50th% male ATD, three THOR-NT ATD) and three 38 km/h (one PMHS, two Hybrid III) frontal sled tests were performed to simulate an occupant seated in the right front passenger seat of a mid-sized sedan restrained with a standard (not force-limited) 3-point seatbelt.
Technical Paper

Biomechanical Response of the Pediatric Abdomen, Part 1: Development of an Experimental Model and Quantification of Structural Response to Dynamic Belt Loading

2006-11-06
2006-22-0001
The abdomen is the second most commonly injured region in children using adult seat belts, but engineers are limited in their efforts to design systems that mitigate these injuries since no current pediatric dummy has the capability to quantify injury risk from loading to the abdomen. This paper develops a porcine (sus scrofa domestica) model of the 6-year-old human's abdomen, and then defines the biomechanical response of this abdominal model. First, a detailed abdominal necropsy study was undertaken, which involved collecting a series of anthropometric measurements and organ masses on 25 swine, ranging in age from 14 to 429 days (4-101 kg mass). These were then compared to the corresponding human quantities to identify the best porcine representation of a 6-year-old human's abdomen. This was determined to be a pig of age 77 days, and whole-body mass of 21.4 kg.
Technical Paper

Impact Response and Biomechanical Analysis of the Knee-Thigh-Hip Complex in Frontal Impacts with a Full Human Body Finite Element Model

2008-11-03
2008-22-0019
Changes in vehicle safety design technology and the increasing use of seat-belts and airbag restraint systems have gradually changed the relative proportion of lower extremity injuries. These changes in real world injuries have renewed interest and the need of further investigation into occupant injury mechanisms and biomechanical impact responses of the knee-thigh-hip complex during frontal impacts. This study uses a detailed finite element model of the human body to simulate occupant knee impacts experienced in frontal crashes. The human body model includes detailed anatomical features of the head, neck, shoulder, chest, thoracic and lumbar spine, abdomen, pelvis, and lower and upper extremities. The material properties used in the model for each anatomic part of the human body were obtained from test data reported in the literature. The human body model used in the current study has been previously validated in frontal and side impacts.
Technical Paper

ES-2 Dummy Biomechanical Responses

2002-11-11
2002-22-0018
This technical paper presents the results of biomechanical testing conducted on the ES-2 dummy by the Occupant Safety Research Partnership and Transport Canada. The ES-2 is a production dummy, based on the EuroSID-1 dummy, that was modified to further improve testing capabilities as recommended by users of the EuroSID-1 dummy. Biomechanical response data were obtained by completing a series of drop, pendulum, and sled tests that are outlined in the International Organization of Standardization Technical Report 9790 that describes biofidelity requirements for the midsize adult male side impact dummy. A few of the biofidelity tests were conducted on both sides of the dummy to evaluate the symmetry of its responses. Full vehicle crash tests were conducted to verify if the changes in the EuroSID-1, resulting in the ES-2 design, did improve the dummy's testing capability. In addition to the biofidelity testing, the ES-2 dummy repeatability, reproducibility and durability are discussed.
X