Refine Your Search

Topic

Search Results

Standard

ELEVATED TEMPERATURE PROPERTIES OF CAST IRONS

1988-05-01
HISTORICAL
J125_198805
The purpose of this SAE Information Report is to provide automotive engineers and designers with a concise statement of the basic characteristics of cast iron under elevated temperature conditions. As such, the report concentrates on general statements regarding these properties with limited illustrative data, anticipating that those who may be interested in more detail will want to use the bibliography provided at the conclusion of the report.
Standard

Elevated Temperature Properties of Cast Irons

2018-01-09
CURRENT
J125_201801
The purpose of this SAE Information Report is to provide automotive engineers and designers with a concise statement of the basic characteristics of cast iron under elevated temperature conditions. As such, the report concentrates on general statements regarding these properties with limited illustrative data, anticipating that those who may be interested in more detail will want to use the bibliography provided at the conclusion of the report.
Standard

Zinc Die Casting Alloys

2017-12-20
CURRENT
J469_201712
Because of the drastic chilling involved in die casting and the fact that the solid solubilities of both aluminum and copper in zinc change with temperature, these alloys are subject to some aging changes, one of which is a dimensional change. Both of the alloys undergo a slight shrinkage after casting, which at room temperature is about two-thirds complete in five weeks. It is possible to accelerate this shrinkage by a stabilizing anneal, after which no further changes occur. The recommended stabilizing anneal is 3 to 6 h at 100 °C (212 °F), or 5 to 10 h at 85 °C (185 °F), or 10 to 20 h at 70 °C (158 °F). The time in each case is measured from the time at which the castings reach the annealing temperature. The parts may be air cooled after annealing. Such a treatment will cause a shrinkage (0.0004 in per in) of about two-thirds of the total, and the remaining shrinkage will occur at room temperature during the subsequent few weeks.
Standard

ZINC DIE CASTING ALLOYS

1989-01-01
HISTORICAL
J469_198901
Because of the drastic chilling involved in die casting and the fact that the solid solubilities of both aluminum and copper in zinc change with temperature, these alloys are subject to some aging changes, one of which is a dimensional change. Both of the alloys undergo a slight shrinkage after casting, which at room temperature is about two-thirds complete in five weeks. It is possible to accelerate this shrinkage by a stabilizing anneal, after which no further changes occur. The recommended stabilizing anneal is 3 to 6 h at 100 °C (212 °F), or 5 to 10 h at 85 °C (185 °F), or 10 to 20 h at 70 °C (158 °F). The time in each case is measured from the time at which the castings reach the annealing temperature. The parts may be air cooled after annealing. Such a treatment will cause a shrinkage (0.0004 in per in) of about two-thirds of the total, and the remaining shrinkage will occur at room temperature during the subsequent few weeks.
Standard

NONDESTRUCTIVE TESTS

1991-02-01
HISTORICAL
J358_199102
Nondestructive tests are those tests which detect factors related to the serviceability or quality of a part or material without limiting its usefulness. Material defects such as surface cracks, laps, pits, internal inclusions, bursts, shrink, seam, hot tears, and composition analysis can be detected. Sometimes their dimensions and exact location can be determined. Such tests can usually be made rapidly. Processing results such as hardness, case depth, wall thickness, ductility, decarburization, cracks, apparent tensile strength, grain size, and lack of weld penetration or fusion may be detectable and measurable. Service results such as corrosion and fatigue cracking may be detected and measured by nondestructive test methods. In many cases, imperfections can be automatically detected so that parts or materials can be classified.
Standard

ULTRASONIC INSPECTION

1991-03-01
HISTORICAL
J428_199103
The scope of this SAE Information report is to provide basic information on ultrasonics, as applied in the field of nondestructive inspection. References to detailed information are listed in Section 2.
Standard

Ultrasonic Inspection

2018-01-09
CURRENT
J428_201801
The scope of this SAE Information report is to provide basic information on ultrasonics, as applied in the field of nondestructive inspection. References to detailed information are listed in Section 2.
Standard

ALLOY AND TEMPER DESIGNATION SYSTEMS FOR ALUMINUM

1973-09-01
HISTORICAL
J993B_197309
This standard provides systems for designating wrought aluminum and wrought aluminum alloys, aluminum and aluminum alloys in the form of castings and foundry ingot, and the tempers in which aluminum and aluminum alloy wrought products and aluminum alloy castings are produced.
Standard

Alloy and Temper Designation Systems for Aluminum

2018-01-09
CURRENT
J993_201801
This standard provides systems for designating wrought aluminum and wrought aluminum alloys, aluminum and aluminum alloys in the form of castings and foundry ingot, and the tempers in which aluminum and aluminum alloy wrought products and aluminum alloy castings are produced.
Standard

ALLOY AND TEMPER DESIGNATION SYSTEMS FOR ALUMINUM

1989-01-01
HISTORICAL
J993_198901
This standard provides systems for designating wrought aluminum and wrought aluminum alloys, aluminum and aluminum alloys in the form of castings and foundry ingot, and the tempers in which aluminum and aluminum alloy wrought products and aluminum alloy castings are produced.
Standard

PENETRATING RADIATION INSPECTION

1991-03-01
HISTORICAL
J427_199103
The purpose of this SAE Information Report is to provide basic information on penetrating radiation, as applied in the field of nondestructive testing, and to supply the user with sufficient information so that he may decide whether penetrating radiation methods apply to his particular inspection need. Detailed information references are listed in Section 2.
Standard

Penetrating Radiation Inspection

2018-01-09
CURRENT
J427_201801
The purpose of this SAE Information Report is to provide basic information on penetrating radiation, as applied in the field of nondestructive testing, and to supply the user with sufficient information so that he may decide whether penetrating radiation methods apply to his particular inspection need. Detailed information references are listed in Section 2.
Standard

High-Strength, Hot-Rolled Steel Bars

2003-09-24
CURRENT
J1442_200309
This SAE Recommended Practice covers two levels of high strength structural low-alloy steel bars having minimum Yield Points of 345 MPa (50 ksi) and 450 MPa (65 ksi). The two strength levels are 345 and 450 MPa or 50 and 65 ksi minimum yield point. Different chemical compositions are used to achieve the specified mechanical properties. In some cases there are significant differences in chemical composition for the same strength level, depending on the fabricating requirements. It should be noted that although the mechanical properties for a steel grade sourced from different suppliers may be the same, the chemical composition may vary significantly. The fabricator should be aware that certain compositional differences may effect the forming, welding, and/or service requirements of the material. It is therefore recommended that the fabricator consult with the producer to understand the effect of chemical composition.
Standard

LIQUID PENETRANT TEST METHODS

1991-03-01
HISTORICAL
J426_199103
The scope of this SAE Information Report is to supply the user with sufficient information so that he may decide whether liquid penetrant test methods apply to his particular inspection problem. Detailed technical information can be obtained by referring to Section 2.
Standard

Liquid Penetrant Test Methods

2018-01-09
CURRENT
J426_201801
The scope of this SAE Information Report is to supply the user with sufficient information so that he may decide whether liquid penetrant test methods apply to his particular inspection problem. Detailed technical information can be obtained by referring to Section 2.
X