Refine Your Search

Topic

Search Results

Journal Article

Virtual Rig Simulation in the Exhaust System Development

2008-04-14
2008-01-1215
A newly developed approach, Virtual Rig Simulation for exhaust, is introduced in this paper. An OEM exhaust system durability performance is simulated and simulation results are correlated to test results. The correlation results prove that the Virtual Rig Simulation predicates critical locations very well. The modal transient analysis is applied and input loading is from full event RLDA data. The advantage of the approach is that it can be applied in upfront design stage to predict exhaust system durability performance so that test cost and time are reduced significantly. Also, the presented approach is not only useful for exhaust system development but also useful for other product development.
Journal Article

Fatigue Life Assessment of Welded Structures with the Linear Traction Stress Analysis Approach

2012-04-16
2012-01-0524
Structural stress methods are now widely used in fatigue life assessment of welded structures and structures with stress concentrations. The structural stress concept is based on the assumption of a global stress distribution at critical locations such as weld toes or weld throats, and there are several variants of structural stress approaches available. In this paper, the linear traction stress approach, a nodal force based structural stress approach, is reviewed first. The linear traction stress approach offers a robust procedure for extracting linear traction stress components by post-processing the finite element analysis results at any given hypothetical crack location of interest. Pertinent concepts such as mesh-insensitivity, master S-N curve, fatigue crack initiation and growth mechanisms are also discussed.
Journal Article

High-Temperature Life Assessment of Exhaust Components and the Procedure for Accelerated Durability and Reliability Testing

2012-09-24
2012-01-2058
Fatigue, creep, oxidation, or their combinations have long been recognized as the principal failure mechanisms in many high-temperature applications such as exhaust manifolds and thermal regeneration units used in commercial vehicle aftertreatment systems. Depending on the specific materials, loading, and temperature levels, the role of each damage mechanism may change significantly, ranging from independent development to competing and combined creep-fatigue, fatigue-oxidation, creep-fatigue-oxidation. Several multiple failure mechanisms based material damage models have been developed, and products to resist these failure mechanisms have been designed and produced. However, one of the key challenges posed to design engineers is to find a way to accelerate the durability and reliability tests of auto exhaust in component and system levels and to validate the product design within development cycle to satisfy customer and market's requirements.
Technical Paper

Effect of Welding Induced Residual Stresses on the Fatigue Behavior of T-joints

1998-04-08
981506
This paper presents a numerical analysis of the effect of weld induced residual stress on the fatigue behavior of a T-joint. The thick-section T-joint contained 18 individual weld passes and was subjected to fully-reversed, zero-maximum, and zero-minimum fatigue cycling. The effect of the residual stress was demonstrated by comparing the result with and without residual stress. It was concluded that the local fatigue parameters (mean stress, alternating stress, and stress ratio) at the suspected crack initiation site were changed significantly by the residual stresses when the applied stress were other than fully reversed. In addition, the effect of the stress concentration at the weld was more significant that the effect of the residual stress for the applied fatigue loads levels that were considered. The analysis method presented can be used to assess weldment design and process variables.
Technical Paper

Modeling and Analysis of Microstructure Development in Resistance Spot Welds of High Strength Steels

1998-09-29
982278
In this study, an incrementally coupled finite element analysis procedure is used to analyze the electrical, thermal, and mechanical interaction during resistance spot welding processes. The results of the finite element analysis are validated by experimental measurements of the weld nugget sizes and dynamic resistance. The temperature results from the thermo-electric analysis are used as the input for the prediction of the microstructure evolution in the resistance spot welds of high strength steels. Consequently such welding parameters as welding current, electrode force, electrode designs, cooling water temperature and flow rate, and electrode holding time can be linked with the weld nugget size, microstructure and mechanical properties in spot welds, and eventually the residual stresses and performance of spot welded structures.
Technical Paper

Application of Verity Method to Predict Bushing Fatigue Life and Load Limit

2009-04-20
2009-01-0813
Durability performance is one of the most important aspects of exhaust system design. Great effort has been expended to develop the ability to accurately and quickly predict the durability of the system in the early development stages. Welded joints in an exhaust system are the most prone to failure; however, the fatigue life of a welded joint is usually much more difficult to predict than that of a base material. The difficulty of predicting the fatigue life of a welded structure lies primarily in the variability associated with the elements of a weldment, including differing material and gap requirements, notch generation, residual stresses, and imprecise application, among others. The experts at the Battelle Center for Welded Structures Research have developed an approach to predict the fatigue life of a welded structure known as the Verity method.
Technical Paper

Evaluation of Stress Intensity Factor-Based Predictive Technique for Fatigue Life of Resistance Spot Welds

2001-03-05
2001-01-0830
This paper summarizes the results of a recent study on a fatigue predictive technique for spot-welded automotive structures. The technique makes use of an equivalent stress intensity factor (Keq) as fatigue parameter for life predictions. A series of fatigue tests were conducted by using different types of fatigue specimens and weld arrangements. Using the raw test data collected, fatigue properties were processed in the form of ΔKeq versus fatigue life by a fracture mechanics based stress intensity factor technique. It is demonstrated that the fatigue properties are consistent among all the specimens tested and relatively geometry-independent. With the stress intensity factor based fatigue properties, the predictive technique was applied to more complex specimens with non-symmetric weld configurations and non-uniform loading conditions (resulting in mixed-mode loading on each weld). The results indicate good correlation between life predictions and test data.
Technical Paper

A Robust Structural Stress Procedure for Characterizing Fatigue Behavior of Welded Joints

2001-03-05
2001-01-0086
This paper summarizes some recent results on fatigue evaluation of welded joints. A mesh-insensitive structural stress procedure was discussed and employed to characterize geometric stress raiser effects at welded joints. Existing weld fatigue data published in the open literature were analyzed using the structural stress parameter.
Technical Paper

Modal Transient FEA Study to Simulate Exhaust System Road Load Test

2011-04-12
2011-01-0027
Durability life is one of the major concerns in the automotive industry. Road Load Data Acquisition (RLDA) is one of the most important steps to verify exhaust system durability performance. RLDA will not only provide data for system level rig testing drive file development but also for exhaust components validation (computing safety factors). Modal transient FEA can be utilized to simulate either vehicle durability testing or sub-system level rig testing. How to simulate correctly is critical in the simulation. One of the most challenging portions in the full exhaust system simulation is isolator modeling due to its non-linear characteristics. However, we have to use linear modeling to simulate isolator in modal transient analysis, which induces errors.
Technical Paper

Potential Failure Modes and Accelerating Test Strategy of Burner

2012-04-16
2012-01-0523
Driven by diesel engine emission regulation, more emission aftertretment products have been under development by Tenneco to address the Particular Matter (PM) and NOx reduction needs. The T.R.U.E. (Thermal Regeneration Unit for Exhaust) Clean active thermal management system is one of the examples to reduce PM. The system is designed to increase exhaust temperatures for DPF (Diesel Particulate Filter) regeneration. This product is exposed to high temperature and high oxidation. Therefore, thermal fatigue, creep, oxidation and the interaction become critical mechanism to be considered for its durability. One of the key challenges to validate this product is to find a way of accelerated testing for thermal, creep, and oxidation as well as for vibration. In this paper, accelerated durability test strategy for high temperature device like T.R.U.E Clean is addressed.
Technical Paper

A Thermal-Fatigue Life Assessment Procedure for Components under Combined Temperature and Load Cycling

2013-04-08
2013-01-0998
High-temperature thermal-mechanical systems are considered as an indispensable solution to modern vehicle emission control. Such systems include advanced engines, manifolds, thermal regeneration systems, and many other systems. Creep, fatigue, oxidation, or their combinations are the fundamental underlying material degradation and failure mechanisms in these systems subjected to combined thermal and mechanical loadings. Therefore, the basic understanding and modeling of these mechanisms are crucial in engineering designs. In this paper, the state-of-the-art methods of damage/failure modeling and life assessment for components under thermal-fatigue loading, are reviewed first. Subsequently, a new general life assessment procedure is developed for components subjected to variable amplitude thermal- and mechanical- loadings, with an emphasis on hold-time effect and cycle counting.
Technical Paper

The Uncertainty of Estimated Lognormal and Weibull Parameters for Test Data with Small Sample Size

2013-04-08
2013-01-0945
In this paper, the uncertainty of the estimated parameters of lognormal and Weibull distributions for test data with small sample size is investigated. The confidence intervals of the estimated parameters are determined by solving available analytical equations, and the scatters of the estimated parameters with respect to the true values are estimated by using Monte Carlo simulation approaches. Important parameters such as mean, standard deviation, and design curve are considered. The emphasis is on the interpretation and the implication of the obtained shape parameter β of the Weibull distribution function and the design curve obtained from a lognormal distribution function. Finally, the possible impact of this study on the current engineering practice is discussed.
Technical Paper

Innovative Electrode Design and FEA Validation of Aluminum Resistance Spot Welding

2006-04-03
2006-01-0091
In the new design, the electrode employs composite electrode face construction with dissimilar materials. A cylindrical insert located in the electrode face center is made of low thermal and electrical conductivity material, such as stainless steel, and an annular outer sleeve is made of stainless steel and located at periphery of the electrode. Base material of the electrode is still made of copper alloys. With this electrode design, the electrical-thermal-mechanical conditions can be improved by confining the current flow path to reduce current level required for the weld nugget formation, and optimizing electrode pressure distribution, and minimizing electrode face heating and plastic deformation.
Technical Paper

Modeling and Simulation of Creep-Fatigue-Oxidation Crack Growth

2013-04-08
2013-01-0167
Creep, fatigue, oxidation, or their combinations are usually the fundamental underlying material degradation and failure mechanisms in advanced engines, manifolds, thermal regeneration systems, and other systems. Therefore, the basic understanding and appropriate mathematical modeling of these mechanisms are crucial in engineering designs. Several numerical simulation strategies are being pursued to achieve a long-term goal of virtual simulation of high-temperature degradation and failure of such components and systems. In this paper, as the first step of the effort in virtual high-temperature material failure simulation, the numerical simulation of the recently developed crack growth models, i.e. creep-fatigue, fatigue-oxidation, and creep-fatigue-oxidation models, are conducted. It is demonstrated that the models developed can be implemented in an efficient way for virtual life assessment and engineering design applications.
Technical Paper

Computational Simulation from Hydroforming to Welding Assembly for Rapid Virtual Proto-Typing

1999-09-28
1999-01-3190
In this paper, an advanced computational framework is presented for integrated simulation of hydroforming effects and welding assembly operations. The finite element procedures take advantages of existing commercial finite element codes such as ABAQUS by employing a series of user-developed interface modules and a unified material constitutive model formulated with internal state variables that are used to track stress/strain histories induced during forming and welding operations. Its applications in design and welding assembly of hydrofomed components are demonstrated with a series of selected case studies. Based on the detailed finite element simulations described in the above, the following important observations can be made: Weld placements are extremely important in order to mitigate the significant cold work effects in hydroforming.
Technical Paper

A Framework for Modeling Spot Welds in Finite Element Analysis of Auto-Body Structures

1999-09-28
1999-01-3191
In this paper, a generalized spot weld model is presented for analyzing various performance attributes of spotwelded automotive structures. The spot weld model employs conventional definitions of beam- or nonlinear spring type elements. The relevant global mechanical properties are presented in the form of six pairs of generalized load-displacement relationships with respect to six degrees of freedom. The required generalized load-displacement relationships can be readily derived with assistance of local finite element welding process model along with limited single-weld coupon testing. As result, the effects of actual weld properties, welding-induced residual stress states, etc. can be incorporated for applications in finite element analysis of complex autobody structures. Its applications in conventional stress analysis for durability prediction, and limit load prediction, and crashworthiness simulation are also discussed with a few selected examples.
Technical Paper

Modeling of Resistance Spot Welds:From Process to Performance

1999-09-28
1999-01-3211
This paper addresses the modeling issues of resistance spot welds. The state of the art modeling techniques on weld process simulation, weld property prediction and weld engineering performance evaluation are presented. First, weld process simulation is performed using the incrementally coupled thermal-electrical-mechanical analyses. The resulted weld nugget size, weld residual stress and weld material property distributions are then used in determining the static performance of a single weld coupon. Comparisons with experimental measurements are presented as validations. Results generated from this single weld coupon is then used in the simulation of dynamic crush mechanism of a spot welded single hat section.
Technical Paper

Effects of Welding Procedures on Formability: A Finite Element Study

1999-03-01
1999-01-0680
Tailor-welded blanks (TWB) have been increasingly used in the automotive industry as an effective way to reduce weight and costs. Although some of the joining processes for TWB are relatively well known, little independent information exists regarding welding procedure effects on weld/HAZ properties, particularly their effects on form-ability and structural performance under various conditions. In this paper, advanced computational modeling techniques were used to investigate the effects of welding procedures on weld property evolution and its impact on the formability issues. Two case studies were presented. One is on TIG welding of 6000 series aluminum tailored blanks, where thermomechanical effects on weldability was analyzed. Its implication on weld performance during forming will be discussed. The other case is on laser-beam welding of high strength steel to mild steel with a non-linear weld. The detailed thermal history and residual stress development will be presented.
Technical Paper

A Probabilistic Approach in Virtual CAE Fatigue Life Prediction for Components of Exhaust System

2018-04-03
2018-01-1397
Component bench testing is a basic method to validate the component fatigue life. However, the component bench testing takes long time and is costly. With the development of more powerful computer and CAE simulation techniques, virtual CAE simulation method becomes more important in the component design, optimization, and validation due to its efficiency and low cost. Fatigue life of components of exhaust system is a critical characteristic and it is not deterministic but statistical phenomenon. Thus, a probabilistic approach is necessary. Variations and reliability of fatigue life can be considered in physical testing by testing more samples. However, how to account variations from manufacturing and testing in virtual CAE simulation is a big challenge. In this paper, a virtual CAE fatigue life prediction of components of exhaust system by probabilistic approach is studied and proposed.
Technical Paper

A Two-Parameter Model for Mixed-Mode Fatigue Crack Growth and Multiaxial Fatigue

2015-04-14
2015-01-0541
Engineering components and systems are usually subjected to mixed-mode and multiaxial fatigue loadings, and these conditions should be considered in product durability and reliability design and the maintenance of aging equipment, especially mission-critical components and systems. However, modeling the damage and degradation processes under these complex loading conditions is difficult and challenging task because not only the concepts, such as range, mean, peak, valley etc., developed for uniaxial loading usually cannot be directly transferred to mixed-mode and multiaxial loadings, but also some very unique phenomena related to these complex loading conditions. One such a phenomenon is the loading path effect that can be simply described as: out-of-phase loading is more damaging than in-phase loading for some ductile materials.
X