Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Bioregenerative Components for a Lunar CELSS: Modeling and Performance

1991-07-01
911488
The use of bioregenerative components in a long-term mission closed ecological life support system (CELSS) will help lower mission costs by reducing the need for expensive resupply for oxygen, water, and food. By growing plants on a lunar base, we may be able to provide significant amounts of food and potable water while revitalizing the air supply. By processing solid wastes, we can supply growing plants with additional carbon dioxide and water. Recently, we added the capability of modeling plant growth and waste processing to the Computer-Aided System Engineering and Analysis (CASE/A) environmental control and life support system (ECLSS) modeling package. The objective of this study was to determine if a plant growth unit, embedded within a CELSS lunar base design, including a physical-chemical waste processing unit and crew, would be sufficient to handle system air revitalization requirements.
Technical Paper

Regenerative Life Support Systems (RLSS) Test Bed Performance: Characterization of Plant Performance in a Controlled Atmosphere

1991-07-01
911426
Future manned habitats such as a Lunar or Martian outpost will require a high degree of self-sufficiency to minimize cost and dependency on resupply from Earth. Food and other life support expendables are major resupply items required for long-term habitation of planetary surfaces. By growing higher plants for food, resupply can be reduced and self-sufficiency increased. Additionally, higher plants provide carbon dioxide (CO2) removal and reduction, oxygen (O2) production, and water reclamation for human life support. Plants have been grown in the controlled environment of the Regenerative Life Support Systems (RLSS) Test Bed at Johnson Space Center. The systems performance in terms of supporting human life was determined for plant CO2 assimilation, O2 generation, and evapotranspiration rates, trace contaminant generation, and biomass production. In addition, test conditions and anomalies are described.
Technical Paper

On-Orbit Performance of the Major Constituent Analyzer

2002-07-15
2002-01-2404
The Major Constituent Analyzer (MCA) was activated on-orbit on 2/13/01 and provided essentially continuous readings of partial pressures for oxygen, nitrogen, carbon dioxide, methane, hydrogen and water in the ISS atmosphere. The MCA plays a crucial role in the operation of the Laboratory ECLSS and EVA operations from the airlock. This paper discusses the performance of the MCA as compared to specified accuracy requirements. The MCA has an on-board self-calibration capability and the frequency of this calibration could be relaxed with the level of instrument stability observed on-orbit. This paper also discusses anomalies the MCA experienced during the first year of on-orbit operation. Extensive Built In Test (BIT) and fault isolation capabilities proved to be invaluable in isolating the causes of anomalies. The process of fault isolation is discussed along with development of workaround solutions and implementation of permanent on-orbit corrections.
Technical Paper

Plant Growth Modeling at the JSC Variable Pressure Growth Chamber: An Application of Experimental Design

1992-07-01
921356
This paper describes the approach and results of an effort to characterize plant growth under various environmental conditions at the Johnson Space Center variable pressure growth chamber. Using a field of applied mathematics and statistics known as design of experiments (DOE), we developed a test plan for varying environmental parameters during a lettuce growth experiment. The test plan was developed using a Box-Behnken approach to DOE. As a result of the experimental runs, we have developed empirical models of both the transpiration process and carbon dioxide assimilation for Waldman's Green lettuce over specified ranges of environmental parameters including carbon dioxide concentration, light intensity, dew-point temperature, and air velocity. This model also predicts transpiration and carbon dioxide assimilation for different ages of the plant canopy.
Technical Paper

SAWD II Subsystem Integration into the Variable Pressure Growth Chamber: A Systems Level Analysis Using CASE/A

1994-06-01
941451
The NASA Johnson Space Center has plans to integrate a Solid Amine Water Desorbed (SAWD II) carbon dioxide removal subsystem into the Variable Pressure Growth Chamber (VPGC). The SAWD II subsystem will be used to remove any excess carbon dioxide (CO2) input into the VPGC which is not assimilated by the plants growing in the chamber. An analysis of the integrated VPGC-SAWD II system was performed using a mathematical model of the system implemented in the Computer-Aided System Engineering and Analysis (CASE/A) package. The analysis consisted of an evaluation of the SAWD II subsystem configuration within the VPGC, the planned operations for the subsystem, and the overall performance of the subsystem and other VPGC subsystems. Based on the model runs, recommendations were made concerning the SAWD II subsystem configuration and operations, and the chambers' automatic CO2 injection control subsystem.
Technical Paper

Development of an Empirically Based Wheat Model for the Johnson Space Center's RLSS Test Bed

1994-06-01
941597
The design and operation of hybrid physical/chemical and biological life support systems for space application is a complex and difficult process. This paper describes the approach and results of an effort to characterize wheat growth, under various environmental conditions, at the Johnson Space Center's (JSC) Ambient Pressure Growth Chamber (APGC). Using a designed experiment, a test plan was developed for varying environmental parameters during a wheat growth experiment. The test plan was developed using a Central Composite approach to experimental design. As a result of the experimental runs, an empirical model of both the transpiration process and carbon dioxide assimilation for wheat growth over specified ranges of environmental parameters has been developed. The environmental parameters include carbon dioxide concentration, ambient chamber temperature, vapor pressure deficit, and air velocity.
Technical Paper

Integrated Orbiter/International Space Station Air Quality Analysis for Post-Mission 2A.1 Risk Mitigation

2000-07-10
2000-01-2250
Crewmember ingress of the International Space Station (ISS) before that time accorded by the original ISS assembly sequence, and thus before the ISS capability to adequately control the levels of temperature, humidity, and carbon dioxide, poses significant impacts to ISS Environmental Control and Life Support (ECLS). Among the most significant considerations necessitated by early ingress are those associated with the capability of the Shuttle Transportation System (STS) Orbiter to control the aforementioned levels, the capability of the ISS to deliver the conditioned air among the ISS elements, and the definition and distribution of crewmember metabolic heat, carbon dioxide, and water vapor. Even under the assumption that all Orbiter and ISS elements would be operating as designed, condensation control and crewmember comfort were paramount issues preceding each of the ISS Missions 2A and 2A.1.
X