Refine Your Search

Topic

Search Results

Journal Article

The Performance Characteristics of an Production Oriented Air Hybrid Powertrain

2010-04-12
2010-01-0821
In a previous paper [ 1 ], the authors have proposed a cost effective air hybrid concept based on a proprietary intake system and cam profile switching (CPS) system [ 2 ]. It was shown through engine simulations that the pneumatic hybrid operation could be achieved with about 15% regenerative efficiency. The proposed air hybrid operation can be achieved with proven technologies and engine components and hence it represents a cost-effective, reliable and quick deployable solution for low carbon vehicles. In this work, a four-cylinder 2 litre diesel engine has been modelled to operate on refined air hybrid engine configurations and the braking and motoring performance of each configuration have been studied. Both air hybrid systems can be constructed with production technologies and incur minimum changes to the existing engine design.
Technical Paper

Analysis of the Boost System for a High Performance 2-Stroke Boosted Uniflow Scavenged Direct Injection Gasoline (BUSDIG) Engine

2020-09-15
2020-01-2007
A 2-stroke boosted uniflow scavenged direct injection gasoline (BUSDIG) engine was researched and developed at Brunel University London to achieve higher power-to-mass ratio and thermal efficiency. In the BUSDIG engine concept, the intake scavenge ports are integrated to the cylinder liner and controlled by the movement of piston top while exhaust valves are placed in the cylinder head. Systematic studies on scavenging ports, intake plenum, piston design, valve opening profiles and fuel injection strategies have been performed to investigate and optimise the scavenging performance and in-cylinder fuel/air mixing process for optimised combustion process. In order to achieve superior power performance with higher thermal efficiency, the evaluation and optimisation of the boost system for a 1.0 L 2-cylinder 2-stroke BUSDIG engine were performed in this study using one dimensional (1D) engine simulations.
Technical Paper

Combustion Visualization and Experimental Study on Multi-Point Micro-Flame Ignited (MFI) Hybrid Lean-Burn Combustion in 4-Stroke Gasoline Engines

2020-09-15
2020-01-2070
Lean-burn combustion is an effective method for increasing the thermal efficiency of gasoline engines fueled with stoichiometric fuel-air mixture, but leads to an unacceptable level of high cyclic variability before reaching ultra-low nitrogen oxide (NOx) emissions emitted from conventional gasoline engines. Multi-point micro-flame ignited (MFI) hybrid combustion was proposed to overcome this problem, and can be can be grouped into double-peak type, ramp type and trapezoid type with very low frequency of appearance. This research investigates the micro-flame ignition stages of double-peak type and ramp type MFI combustion captured by high speed photography. The results show that large flame is formed by the fast propagation of multi-point flame occurring in the central zone of the cylinder in the double-peak type. However, the multiple flame sites occur around the cylinder, and then gradually propagate and form a large flame accelerated by the independent small flame in the ramp type.
Technical Paper

Effect of a Split-Injection Strategy on the Atomisation Rate Using a High Pressure Gasoline DI Injector

2020-04-14
2020-01-0322
The Gasoline direct-injection (GDI) engine can emit high levels of particulate matter and unburned Hydrocarbons when operating under stratified charge combustion mode. Injecting late in the compression stroke means the fuel has insufficient time to atomise and evaporate. This could cause fuel film accumulation on the piston surface and combustion liner. Locally fuel rich diffusion combustion could also result in the formation of soot particles. Employing a split-injection strategy can help tackle these issues. The first injection is initiated early in the intake stroke and could ensure a global homogeneous charge. The second injection during the compression stroke could help form a fuel-rich charge in the vicinity of the spark plug. Many studies have established the crucial role that a split-injection strategy plays in the stratified charge operation of GDI engines.
Technical Paper

Investigation into Controlled Auto-Ignition Combustion in a GDI Engine with Single and Split Fuel Injections

2007-04-16
2007-01-0211
A multi-cycle three-dimensional CFD engine simulation programme has been developed and applied to analyze the Controlled autoignition (CAI) combustion, also known as homogeneous charge compression ignition (HCCI), in a direct injection gasoline engine. CAI operation was achieved through the negative valve overlap method by means of a set of low lift camshafts. The effect of single injection timing on combustion phasing and underlying physical and chemical processes involved was examined through a series of analytical studies using the multi-cycle 3D engine simulation programme. The analyses showed that early injection into the trapped burned gases of a lean-burn mixture during the negative valve overlap period had a large effect on combustion phasing, due to localized heat release and the production of chemically reactive species. As the injection was retarded to the intake stroke, the charge cooling effect tended to slow down the autoignition process.
Technical Paper

Developing a Fuel Stratification Concept on a Spark Ignition Engines

2007-04-16
2007-01-0476
A fuel stratification concept has been developed in a three-valve twin-spark spark ignition engine. This concept requires that two fuels or fuel components of different octane numbers (ON) be introduced into the cylinder separately through two independent inlet ports. They are then stratified into two regions laterally by a strong tumbling flow and ignited by the spark plug located in each region. This engine can operate in the traditional stratified lean-burn mode at part loads to obtain a good part-load fuel economy as long as one fuel is supplied. At high loads, an improved fuel economy might also be obtained by igniting the low ON fuel first and leaving the high ON fuel in the end gas region to resist knock. This paper gives a detailed description of developing the fuel stratification concept, including optimization of in-cylinder flow, mixture and combustion.
Technical Paper

CAI Combustion with Methanol and Ethanol in an Air-Assisted Direct Injection SI Engine

2008-06-23
2008-01-1673
CAI combustion has the potential to be the most clean combustion technology in internal combustion engines and is being intensively researched. Following the previous research on CAI combustion of gasoline fuel, systematic investigation is being carried out on the application of bio-fuels in CAI combustion. As part of an on-going research project, CAI combustion of methanol and ethanol was studied on a single-cylinder direct gasoline engine with an air-assisted injector. The CAI combustion was achieved by trapping part of burnt gas within the cylinder through using short-duration camshafts and early closure of the exhaust valves. During the experiment the engine speed was varied from 1200rpm to 2100rpm and the air/fuel ratio was altered from the stoichiometry to the misfire limit. Their combustion characteristics were obtained by analysing cylinder pressure trace.
Technical Paper

Studies of the Control of In-cylinder Inhomogeneities in a 4VVAS Gasoline Engine

2008-04-14
2008-01-0052
In this research, numerical simulation using Star-CD is performed to investigate the mixing process of a single-cylinder experimental gasoline engine equipped with 4VVAS (4 Variable Valve System). Different engine operating conditions are studied with respect to valve parameters, including EVC (Exhaust Valve Closing), IVO (Intake Valve Opening), and IVL (Intake Valve Lift). The definitions of RGF (Residual Gas Fraction)/temperature statistical distribution and inhomogeneity are proposed and quantified, on which the influences of the aforementioned valve parameters are analyzed. Results reveal that, the distribution of in-cylinder residuals varies with valve parameter combinations. Intake valve timing has a greater effect on the in-cylinder distribution and inhomogeneity of residuals than intake valve lift. Earlier IVO leads to lower RGF inhomogeneity around TDC.
Technical Paper

In-Cylinder Studies of CAI Combustion with Negative Valve Overlap and Simultaneous Chemiluminescence Analysis

2009-04-20
2009-01-1103
The negative valve overlap has been shown as one of the most effective means to achieve controlled autoignition combustion in a four-stroke gasoline engine. A number of researches have been carried out on the performance and emission characteristics of CAI engines but there are still some fundamental questions that are yet to be addressed such as in-cylinder process. In the present study, a Ricardo Hydra single cylinder, four stroke optical gasoline engine was instrumented to investigate CAI combustion through negative valve overlap configuration. The effects of direct fuel injection timings and direct air injection at lambda 1 were studied by means of simultaneous in-cylinder heat release study and high speed images of complete chemiluminescence emission, OH and CHO radicals. In particular, the minor combustion process during the NVO period with various air injection quantities was studied with both heat release analysis and chemiluminescence results.
Technical Paper

Investigation of CAI Combustion with Positive Valve Overlap and Enlargement of CAI Operating Range

2009-04-20
2009-01-1104
Controlled Auto-Ignition (CAI) combustion was investigated in a Ricardo E6 single cylinder, four-stroke gasoline engine. CAI combustion was achieved by employing positive valve overlap in combination with variable compression ratios and intake air temperatures. The combustion characteristics and emissions were studied in order to understand the major advantages and drawbacks of CAI combustion with positive valve overlap. The enlargement of the CAI operational region was obtained by boosting intake air and adding external EGR. The lean-boosted operation elevated the range of CAI combustion to the higher load region, whilst the use of external EGR allowed the engine to operate with CAI combustion in the region between boosted and N/A CAI operational ranges. The results were analyzed to investigate combustion characteristics, performance and emissions of the boosted CAI operations.
Technical Paper

In-Cylinder Measurements of Fuel Stratification in a Twin-Spark Three-Valve SI Engine

2004-03-08
2004-01-1354
In order to take advantage of different properties of fuel components or fractions, a new concept of fuel stratification has been proposed by the authors. This concept requires that two fractions of standard gasoline (e.g., light and heavy fractions) or two different fuels in a specially formulated composite be introduced into the cylinder separately through two separate intake ports. The two fuels will be stratified into two regions in the cylinder by means of strong tumble flows. In order to verify and optimize the fuel stratification, a two-tracer Laser Induced Fluorescence (LIF) technique was developed and applied to visualize fuel stratification in a three-valve twin-spark SI engine. This was realized by detecting simultaneously fluorescence emissions from 3-pentanone in one fuel (hexane) and from N,N-dimethylaniline (DMA) in the other fuel (iso-octane).
Technical Paper

Diesel Soot Oxidation under Controlled Conditions

2001-09-24
2001-01-3673
A quantitative relationship between diesel soot oxidation rate and oxidation temperature and oxygen partial pressure was investigated by burning the diesel exhaust soot particles in a controlled flat flame supplied with methane/air/oxygen/nitrogen mixtures. The oxidation temperature and the oxygen partial pressure were controlled in the ranges of 1530 to 1820 K and 0.01 to 0.05 atm (1atm = 1.01325 bar) respectively. Soot particle size distribution measurements were achieved with transmission electron microscopy (TEM) for particle samples that were collected on copper grids at different positions along the flame centerline. Oxidation periods were determined by means of laser Doppler anemometry (LDA). The experimental results showed that the experimental oxidation rates fall between the values predicted by the Nagle and Strickland-Constable formula and those by the Lee formula.
Technical Paper

Analysis of Tumble and Swirl Motions in a Four-Valve SI Engine

2001-09-24
2001-01-3555
Tumble and swirl motions in the cylinder of a four-valve SI engine with production type cylinder head were investigated using a cross-correlation digital Particle Image Velocimetry (PIV). Tumble motion was measured on the vertical symmetric plane of the combustion chamber. Swirl motion was measured on a plane parallel to the piston crown with one of intake ports blocked. Large-scale flow behaviours and their cyclic variations were analysed from the measured two-dimensional velocity data. Results show that swirl motion is generated at the end of the intake stroke and persists to the end of the compression stroke. Tumble vortex is produced in the early stage of the compression stroke and distorted in the late stage of the stroke. The cyclic variation of swirl motion is noticeable. The cyclic variation in tumble dominated flow field is much greater.
Technical Paper

Optimisation of In-Cylinder Flow for Fuel Stratification in a Three-Valve Twin-Spark-Plug SI Engine

2003-03-03
2003-01-0635
In-cylinder flow was optimised in a three-valve twin-spark-plug SI engine in order to obtain good two-zone fuel fraction stratification in the cylinder by means of tumble flow. First, the in-cylinder flow field of the original intake system was measured by Particle Image Velocimetry (PIV). The results showed that the original intake system did not produce large-scale in-cylinder flow and the velocity value was very low. Therefore, some modifications were applied to the intake system in order to generate the required tumble flow. The modified systems were then tested on a steady flow rig. The results showed that the method of shrouding the lower part of the intake valves could produce rather higher tumble flow with less loss of the flow coefficient than other methods. The optimised intake system was then consisted of two shroud plates on the intake valves with 120° angles and 10mm height. The in-cylinder flow of the optimised intake system was investigated by PIV measurements.
Technical Paper

Impact of Port Fuel Injection and In-Cylinder Fuel Injection Strategies on Gasoline Engine Emissions and Fuel Economy

2016-10-17
2016-01-2174
As the emission regulations for internal combustion engines are becoming increasingly stringent, different solutions have been researched and developed, such as dual injection systems (combined port and direct fuel injection), split injection strategies (single and multiple direct fuel injection) and different intake air devices to generate an intense in-cylinder air motion. The aim of these systems is to improve the in-cylinder mixture preparation (in terms of homogeneity and temperature) and therefore enhance the combustion, which ultimately increases thermal efficiency and fuel economy while lowering the emissions. This paper describes the effects of dual injection systems on combustion, efficiency and emissions of a downsized single cylinder gasoline direct injection spark ignited (DISI) engine. A set of experiments has been conducted with combined port fuel and late direct fuel injection strategy in order to improve the combustion process.
Technical Paper

Engine Downsizing through Two-Stroke Operation in a Four-Valve GDI Engine

2016-04-05
2016-01-0674
With the introduction of CO2 emissions legislation in Europe and many countries, there has been extensive research on developing high efficiency gasoline engines by means of the downsizing technology. Under this approach the engine operation is shifted towards higher load regions where pumping and friction losses have a reduced effect, so improved efficiency is achieved with smaller displacement engines. However, to ensure the same full load performance of larger engines the charge density needs to be increased, which raises concerns about abnormal combustion and excessive in-cylinder pressure. In order to overcome these drawbacks a four-valve direct injection gasoline engine was modified to operate in the two-stroke cycle. Hence, the same torque achieved in an equivalent four-stroke engine could be obtained with one half of the mean effective pressure.
Technical Paper

Expanding the Low Load Limit of HCCI Combustion Process Using EIVO Strategy in a 4VVAS Gasoline Engine

2012-04-16
2012-01-1121
Homogeneous charge compression ignition (HCCI) technology is promising to reduce engine exhaust emissions and fuel consumption in gasoline engine. However, it is still confronted with the problem of its limited operation range. High load is limited by the tradeoff between the quantity of working charge and dilution charge. Low load is limited by the high residual gas fraction and low temperature in the cylinder. One of the highlights of HCCI combustion research at present is to expand the low load limit of HCCI combustion by developing HCCI idle operation. The main obstacle in developing HCCI idle combustion is too high residual gas fraction and low temperature to misfire in cylinder. This paper relates to a method for achieving the appropriate environment for auto-ignition at idle and the optimal tradeoff between the combustion stability and fuel consumption by employing EIVO valve strategy with an equivalent air-fuel ratio.
Technical Paper

Experiment and Analysis of a Direct Injection Gasoline Engine Operating with 2-stroke and 4-stroke Cycles of Spark Ignition and Controlled Auto-Ignition Combustion

2011-08-30
2011-01-1774
Over recent years, in order to develop more efficient and cleaner gasoline engines, a number of new engine operating strategies have been proposed and many of them have been studied on different engines but there is a lack of different comparison between various operating strategies. In this work, a single cylinder direct injection gasoline engine equipped with an electro-hydraulic valvetrain system has been commissioned and used to achieve seven different operation modes, which are 4-stroke throttle-controlled SI, 4-stroke intake valve throttled SI, 4-stroke positive valve overlap SI, 4-stroke negative valve overlap CAI, 4-stroke exhaust rebreathing CAI, 2-stroke CAI and 2-stroke SI. Their performance and emission characteristics are presented and discussed.
Technical Paper

Exploring the NOx Reduction Potential of Miller Cycle and EGR on a HD Diesel Engine Operating at Full Load

2018-04-03
2018-01-0243
The reduction in nitrogen oxides (NOx) emissions from heavy-duty diesel engines requires the development of more advanced combustion and control technologies to minimize the total cost of ownership (TCO), which includes both the diesel fuel consumption and the aqueous urea solution used in the selective catalytic reduction (SCR) aftertreatment system. This drives an increased need for highly efficient and clean internal combustion engines. One promising combustion strategy that can curb NOx emissions with a low fuel consumption penalty is to simultaneously reduce the in-cylinder gas temperature and pressure. This can be achieved with Miller cycle and by lowering the in-cylinder oxygen concentration via exhaust gas recirculation (EGR). The combination of Miller cycle and EGR can enable a low TCO by minimizing both the diesel fuel and urea consumptions.
Technical Paper

Analysis of Gaseous and PM Emissions of 4-Stroke CAI/HCCI and SI Combustion in a DI Gasoline Engine

2013-04-08
2013-01-1549
Direct injection gasoline engines have the potential for improved fuel economy through principally the engine down-sizing, stratified charge combustion, and Controlled Auto Ignition (CAI). However, due to the limited time available for complete fuel evaporation and the mixing of fuel and air mixture, locally fuel rich mixture or even liquid fuel can be present during the combustion process of a direct injection gasoline engine. This can result in significant increase in UHC, CO and Particulate Matter (PM) emissions from direct injection gasoline engines which are of major concerns because of the environmental and health implications. In order to investigate and develop a more efficient DI gasoline engine, a camless single cylinder DI gasoline engine has been developed. Fully flexible electro-hydraulically controlled valve train was used to achieve spark ignition (SI) and Controlled Autoignition (CAI) combustion in both 4-stroke and 2-stroke cycles.
X