Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

World's First High Efficiency Refrigeration Cycle with Two-Phase Ejector: “EJECTOR CYCLE”

2004-03-08
2004-01-0916
Regarding the prevention of global warming and ozone layer depletion to protect the global environment, energy conservation and disuse of CFCs are among the recent industrial requirements. An ejector cycle can save power by eliminating expansion energy loss in the conventional vapor compression refrigeration cycle, which uses an expansion valve, and using the otherwise lost energy as compressor power. This technology is useful for almost all kinds of refrigerating and air-conditioning systems, but has not yet been developed to a practical level anywhere in the world. We have developed a practical ejector cycle technology and successfully commercialized it for the first time in the world, as an ejector cycle refrigerator that drastically improves refrigerating capacity and power efficiency while substantially reducing system weight, in comparison with refrigerators using the conventional vapor compression cycle.
Technical Paper

Well-to-Wheels Analysis of Future Automotive Fuels and Powertrains in the European Context

2004-06-08
2004-01-1924
A consortium of CONCAWE, EUCAR and the EU Commission's JRC carried out a Well-to-Wheels analysis of a wide range of automotive fuels and powertrains. The study gives an assessment of the energy consumption and greenhouse gas emissions for each pathway. It also considers macroeconomic costs and the market potential of alternative fuels.
Technical Paper

Ways to Meet Future Emission Standards with Diesel Engine Powered Sport Utility Vehicles (SUV)

2000-03-06
2000-01-0181
The paper reports on the outcome of a still on-going joint-research project with the objective of establishing a demonstrator high speed direct injection (HSDI) diesel engine in a Sport Utility Vehicle (SUV) which allows to exploit the effectiveness of new engine and aftertreatment technologies for reducing exhaust emissions to future levels of US/EPA Tier 2 and Euro 4. This objective should be accomplished in three major steps: (1) reduce NOx by advanced engine technologies (cooled EGR, flexible high pressure common rail fuel injection system, adapted combustion system), (2) reduce particulates by the Continuous Regeneration Trap (CRT), and (3) reduce NOx further by a DeNOx aftertreatment technology. The current paper presents engine and vehicle results on step (1) and (2), and gives an outlook to step (3).
Technical Paper

Water Jacket Spacer for Improvement of Cylinder Bore Temperature Distribution

2005-04-11
2005-01-1156
For reduction of fuel consumption, a new device “Water Jacket Spacer” which improves temperature distribution of a cylinder block bore wall was developed. In the case of a conventional cylinder block, coolant flow concentrates at the bottom and middle region of the water jacket. While temperature of the upper bore wall is high (due to high-temperature combustion gas) the temperature of the lower bore wall is low, since its only function is to support the piston. When the developed spacer is inserted into a water jacket, the coolant flow concentrates at the upper part of the jacket. As a result, cooling ability to the upper bore wall was improved and temperature of lower bore wall was increased, thereby reducing fuel consumption.
Technical Paper

Virtual Test Bed (VTB) Based Engine Calibration: Unique Approach to Ensure Engine Component Protection & to Meet WNTE in Different Environment Condition for Medium Duty Diesel Engine

2024-01-16
2024-26-0045
In view of BS-VI emission norms implementation in Commercial Vehicle (CV) application, the emissions are not only confirmed in standard condition but also in non-standard condition including different combinations of ambient temperature and pressure especially for checking the emission in WNTE cycle. However, achieving the emissions in different environmental conditions require physical emission calibration to be performed in those conditions. Hence, engine must be calibrated in climatic test chambers to ensure emission in different climatic conditions leading to multifold increase in the calibration effort. With addition of BS-VI emission regulation, After Treatment System (ATS) is a mandatory requirement to reduce the tail pipe emissions. Efficient functioning of ATS requires enough heating to convert the engine out emissions. Vehicle level Real Drive Emission (RDE) measurement without Conformity Factor (CF) limitation are added as an important legislative requirement.
Technical Paper

Virtual Optimization of Vehicle and Powertrain Parameters with Consideration of Human Factors

2005-04-11
2005-01-1945
The rapidly growing complexity and the growing cross linking of powertrain components leads to longer development times, especially in the vehicle calibration process. The number of systems which need to be fitted to each other and the number of parameters to be calibrated in the particular systems are increasing tremendously. The extensive use of simulation promises to reduce the calibration effort by providing pre-optimized parameter sets. This paper describes a new simulation methodology by the interlinking of advanced vehicle simulation and evaluation tools, in particular the AVL-tools CRUISE, VSM and DRIVE. This methodology allows to semi automatically pre-optimize powertrain and vehicle parameters before hardware is involved. So far the pre-calibration of vehicle and powertrain parameters by simulation was not satisfying because of the missing of a reliable evaluation tool for the produced simulation results.
Technical Paper

Vibro-Acoustic Behavior of Bead-Stiffened Flat Panels: FEA, SEA, and Experimental Analysis

1999-05-17
1999-01-1698
Vibration and sound radiation characteristics of bead-stiffened panels are investigated. Rectangular panels with different bead configurations are considered. The attention is focused on various design parameters, such as orientation, depth, and periodicity, and their effects on equivalent bending stiffness, modal density, radiation efficiency and sound transmission. A combined FEA-SEA approach is used to determine the response characteristics of panels across a broad frequency range. The details of the beads are represented in fine-meshed FEA models. Based on predicted surface velocities, Rayleigh integral is evaluated numerically to calculate the sound pressure, sound power and then the radiation efficiency of beaded panels. Analytical results are confirmed by comparing them with experimental measurements. In the experiments, the modal densities of the panels are inferred from averaged mechanical conductance.
Journal Article

Vibration Torque Interception using Multi-Functional Electromagnetic Coupling in a HEV Drive Line

2016-04-05
2016-01-1181
In the present paper, we introduce a drivetrain system using an electromagnetic coupling for hybrid electric vehicles, and propose a new control concept of vibration torque interception. The electromagnetic coupling is an electric machine that is composed of a pair of rotors, and electromagnetic torque acts mutually between the rotors. In the drivetrain system, the electromagnetic coupling works as a torque transmission device with a rotational-speed-converting function. We demonstrate that, by using this control, the electromagnetic coupling also works as a damping device that intercepts the vibration torque of the internal combustion engine, while transmitting the smooth torque to its drive line. Using a model of a two-inertia resonance system, a control system is designed such that a transfer function representing input-to-output torque is shaped in the frequency domain.
Technical Paper

Vibration Reduction Applying Skew Phenomena of Needle Roller Bearings in Brake Actuators

2006-04-03
2006-01-0881
Generally, automobiles have many performance requirements for comfort, of which noise, vibration and harshness are very important. Toyota Motor Corporation equipped several 2003 models with the second-generation Electronically Controlled Brake system (ECB2). These ECB2 actuator units adopted a new structure that reduced pumping noise by controlling the skew phenomena of needle roller bearings. Normally, needle roller bearings are advantageous over other bearings in cases where a large force is loaded on bearings, because the contact areas can be made larger. However, a thrust force arises from skew phenomena because of minute clearances among the component parts of needle roller bearings. As a result, axial vibration of the bearing shaft sometimes occurs due to the thrust force. This paper explains how the thrust force generated from the skew phenomena of needle roller bearings occasionally affects the pumping vibration level of equipped machinery such as the brake actuator unit.
Technical Paper

Versatile Occupant Analysis Model (V.O.A.M) for Frontal Impacts Using LS-DYNA and MADYMO

2005-04-11
2005-01-1000
Regulations implemented by safety commissions throughout the world have resulted in extensive physical testing to protect the occupants during frontal impact events. Significant prototype and test costs aimed at optimizing structure and restraint systems are associated with meeting these regulations. To help reduce development costs, Computer Aided Engineering (CAE) is often applied. LS-DYNA [1] coupled with MADYMO [2] is widely used in crash and occupant safety simulation. An analysis technique which utilized a single model to design and optimize interiors (instrument panel, seats, visor, steering wheel, steering column) and restraints (airbag, seatbelts, retractor, pre-tensioner) was developed. The single model concept captures the global structural kinematics through minimal vehicle representation. Global vehicle modes such as pitch and roll can be represented by applying prescribed motion boundary conditions extracted from full vehicle models.
Technical Paper

Verification of High Frequency SiC On-Board Vehicle Battery Charger for PHV

2016-04-05
2016-01-1210
This paper presents a new application of a vehicle on-board battery charger utilizing high frequency Silicon Carbide (SiC) power devices. SiC is one of the most promising alternatives to Silicon (Si) for power semiconductor devices due to its superior material characteristics such as lower on-state resistance, higher junction temperature, and higher switching frequency. An on-board charger prototype is developed demonstrating these advantages and a peak system efficiency of 95% is measured while operating with a switching frequency of 250 kHz. A maximum output power of 6.06 kW results in a gravimetric power density of 3.8 W/kg and a volumetric power density of 5.0 kW/L, which are about 10 times the densities compared with the current Prius Plug-In Si charger. SiC technology is indispensable to eco-friendly PHV/EV development.
Technical Paper

Verification of Fuel Efficiency Improvement by Application of Highly Effective Silicon Carbide Power Semiconductor to HV Inverter

2016-04-05
2016-01-1230
A prototype power control unit (PCU) was manufactured using silicon carbide (SiC) power semiconductors (diodes and transistors), which have low power loss when switching on and off. This PCU was installed in a hybrid vehicle (HV) and driven on a test course and chassis dynamometer. The test results confirmed a fuel efficiency improvement of about 5 percent.
Journal Article

Verification of ASSTREET Driver-Agent Model by Collaborating with the Driving Simulator

2012-04-16
2012-01-1161
This paper proposes a novel method of verifying comprehensive driver model used for the evaluation of driving safety systems, which is achieved by coupling the traffic simulation and the driving simulator (DS). The method consists of three-step procedure. In the first step, an actual driver operates a DS vehicle in the traffic flow controlled by the traffic simulation. Then in the next step, the actual driver is replaced by a driver model and the surrounding vehicle maneuvers are replayed using the recorded data from the first step. Then, the maneuver by the driver model is compared directly with the actual driver's maneuver along the simulation time steps.
Technical Paper

Verification Test Results of Wireless Charging System

2016-04-05
2016-01-1155
Toyota Motor Corporation (TMC) began a wireless charging field test in February 2014. A wireless charging system was installed at the residences of test subjects with the aim of identifying issues related to convenience and installation in daily usage. The test vehicle was fabricated by installing a wireless charging system into a Prius PHV (Plug-in Hybrid Vehicle). The installed system had the same charging power as the cable charging system used on the base vehicle, and had a charging time of 1.5 hours. A high-frequency 85 kHz power supply and primary coil were produced for the charging infrastructure. To identify differences in charging behavior, the test subjects were asked to use the cable charging system for the first month before changing to the wireless charging system for two months. Data acquisition was performed by an on-board data logger and through interviews with the test subjects.
Technical Paper

Vehicle Surge Reduction Technology during Towing in Parallel HEV Pickup Truck

2022-03-29
2022-01-0613
This paper proposes a technology to reduce vehicle surge during towing that utilizes motors and shifting to help ensure comfort in a parallel HEV pickup truck. Hybridization is one way to reduce fuel consumption and help realize carbon neutrality. Parallel HEVs have advantages in the towing, hauling, and high-load operations often carried out by pickup trucks, compared to other HEV systems. Since the engine, motor, torque converter, and transmission are connected in series in a parallel HEV, vehicle surge may occur when the lockup clutch is engaged to enhance fuel efficiency, similar to conventional powertrains. Vehicle surge is a low-frequency vibration phenomenon. In general, the source is torque fluctuation caused by the engine and tires, with amplification provided by first-order torsional driveline resonance, power plant resonance, suspension resonance, and cabin resonance. This vibration is amplified more during towing.
Technical Paper

Vehicle Speed Prediction for Driver Assistance Systems

2004-03-08
2004-01-0170
A predictive automatic gear shift system is currently under development. The system optimizes the gear shift process, taking the conditions of the road ahead into account, such that the fuel consumption is minimized. An essential part of the system is a module that predicts the vehicle speed dynamics: This calculates a speed trajectory, i.e. the most probable vehicle speed the driver will desire for the upcoming section of the route. In the paper the theoretical background for predicting the vehicle speed, and simulation results of the predictive shift algorithm are presented.
Technical Paper

Vehicle Simulations development to predict Electric field level distribution based on GB/T18387 measurement method

2023-09-29
2023-32-0071
The development of electric vehicles has been progressed, rapidly, to achieve Carbon neutrality by 2050. There have been increasing concerns about Electromagnetic Compatibility (EMC) performance due to increasing power for power trains of vehicles. Because same power train system expands to some vehicles, we have developed numerical simulations in order to predict the vehicle EMC performances. We modeled a vehicle which has inverter noises by numerical simulation to calculate electric fields based on GB/T18387. We simulated the common mode noise which flows through the shielding braid of the high voltage wire harnesses. As a result, it is confirmed a correlation between the electric fields calculated by numerical simulation and the measured one.
Technical Paper

Vehicle Pulse Shape Optimization to Improve Occupant Response in Front Impact

2004-03-08
2004-01-1625
This paper presents a new approach to improve occupant response in a front impact event. Instead of designing a vehicle structure for maximum structural efficiency and safety and then engineer a restraint system for the vehicle, this paper proposes to use a systems approach. In this approach, the vehicle structural response during impact (i.e., pulse) and the restraint system are considered together in the optimization process. In this paper, the 35 mph front impact into a rigid barrier with belted occupants, which is the NHTSA NCAP test, will be used to demonstrate the proposed new approach.
Technical Paper

Vehicle Mass and Stiffness: Search for a Relationship

2004-03-08
2004-01-1168
The effects of vehicle “stiffness” and mass on the occupant response during a crash may be determined by evaluation of accident data. However, “stiffness” and mass may be correlated, making it difficult to separate their effects. In addition, a single-valued “stiffness”, although well defined for linear case, is not well defined for non-linear systems, such as in vehicle crash, making the separation task even more difficult. One approach to addressing the lack of a clear definition of stiffness is to use multiple definitions. Each stiffness definition can then be correlated with mass to look for trends. In this study, such an approach was taken, and the different stiffness definitions were given and their values were obtained from rigid barrier crash test data. No clear relationship between mass and stiffness appears to exist. All the stiffness measures reviewed show, at best, only a weak correlation with mass. A stiffness analysis among different vehicle types was also carried out.
Technical Paper

Vehicle Interior Noise and Vibration Reduction Method Using Transfer Function of Body Structure

2011-05-17
2011-01-1692
To reduce interior noise effectively in the vehicle body structure development process, noise and vibration engineers have to first identify the portions of the body that have high sensitivity. Second, the necessary vibration characteristics of each portion must be determined, and third, the appropriate body structure for achieving the target performance of the vehicle must be realized within a short development timeframe. This paper proposes a new method based on the substructure synthesis method which is effective up to 200Hz. This method primarily utilizes equations expressing the relationship between driving point inertance change at arbitrary body portions and the corresponding sound pressure level (SPL) variation at the occupant's ear positions under external force. A modified system equation was derived from the body transfer functions and equation of motion by adding a virtual dynamic stiffness expression into the dynamic stiffness matrix of the vehicle.
X