Refine Your Search

Topic

Author

Search Results

Technical Paper

Thermal Management of a Hybrid Vehicle Using a Heat Pump

2019-04-02
2019-01-0502
This paper presents the thermal management of a hybrid vehicle (HV) using a heat pump system in cold weather. One advantage of an HV is the high efficiency of the vehicle system provided by the coupling and optimal control of an electric motor and an engine. However, in a conventional HV, fuel economy degradation is observed in cold weather because delivering heat to the passenger cabin using the engine results in a reduced efficiency of the vehicle system. In this study, a heat pump, combined with an engine, was used for thermal management to decrease fuel economy degradation. The heat pump is equipped with an electrically driven compressor that pumps ambient heat into a water-cooled condenser. The heat generated by the engine and the heat pump is delivered to the engine and the passenger cabin because the engine needs to warm up quickly to reduce emissions and the cabin needs heat to provide thermal comfort.
Technical Paper

Techno-Economic Analysis of Solar Hybrid Vehicles Part 1: Analysis of Solar Hybrid Vehicle Potential Considering Well-to-Wheel GHG Emissions

2016-04-05
2016-01-1287
In recent years, automakers have been developing various types of environmentally friendly vehicles such as hybrid (HV), plug-in hybrid (PHV), electric (EV), and fuel cell (FCV) vehicles to help reduce greenhouse gas (GHG) emissions. However, there are few commercial solar vehicles on the market. One of the reasons why automakers have not focused attention on this area is because the benefits of installing solar modules on vehicles under real conditions are unclear. There are two difficulties in measuring the benefits of installing solar modules on vehicles: (1) vehicles travel under various conditions of sunlight exposure and (2) sunlight exposure conditions differ in each region. To address these problems, an analysis was performed based on an internet survey of 5,000 people and publically available meteorological data from 48 observation stations in Japan.
Journal Article

Study of Oxide Supports for PEFC Catalyst

2017-03-28
2017-01-1179
Polymer electrolyte membrane fuel cell (PEFC) systems for fuel cell vehicles (FCVs) require both performance and durability. Carbon is the typical support material used for PEFC catalysts. However, hydrogen starvation at the anode causes high electrode potential states (e.g., 1.3 V with respect to the reversible hydrogen electrode) that result in severe carbon support corrosion. Serious damage to the carbon support due to hydrogen starvation can lead to irreversible performance loss in PEFC systems. To avoid such high electrode potentials, FCV PEFC systems often utilize cell voltage monitor systems (CVMs) that are expensive to use and install. Simplifying PEFC systems by removing these CVMs would help reduce costs, which is a vital part of popularizing FCVs. However, one precondition for removing CVMs is the adoption of a durable support material to replace carbon.
Journal Article

Research on Ultra-High Viscosity Index Engine Oil: Part 1 - “Flat Viscosity” Concept and Contribution to Carbon Neutrality

2022-03-29
2022-01-0525
In recent years, the realization of carbon neutrality has become an activity to be tackled worldwide, and automobile manufacturers are promoting electrification of power train by HEV, PHEV, BEV and FCEV. Although interest in BEV is currently growing, vehicles equipped with internal combustion engines (ICE) including HEV and PHEV will continue to be used in areas where conversion to BEV is not easy due to lack of sufficient infrastructures. For such vehicles, low-viscosity engine oil will be one of the most important means to contribute to further reduction of CO2 emissions. Since HEV requires less work from the engine, the engine oil temperature is lower than that of conventional engine vehicles. Therefore, the reduction of viscous resistance in the mid-to-low temperature range below 80°C is expected to contribute more to fuel economy. On the other hand, the viscosity must be kept above a certain level to ensure the performance of hydraulic devices in the high oil temperature range.
Technical Paper

Research of Fuel Components to Enhance Engine Thermal Efficiency Part I: Concepts for Fuel Molecule Candidate

2019-12-19
2019-01-2255
As part of efforts to address climate change and improve energy security, researchers have improved the thermal efficiency of engines by expanding the lean combustion limit. To further expand the lean combustion limit, the authors focused not only on engine technology but the chemical reactivity of various fuel molecules. Furan and anisole were among the fuel molecules selected, based on the idea that promising candidates should enhance the flame propagation speed and have good knocking resistance. Engine testing showed that the lean limit can be expanded by using fuels with the right molecular structures, resulting in higher thermal efficiency.
Journal Article

PEFC Performance Improvement Methodology for Vehicle Applications

2012-04-16
2012-01-1232
For over a decade and a half, Toyota Motor Corporation has been developing fuel cell vehicles (FCVs) and is continuing various approaches to enable mass production. This study used new methods to quantitatively observe some of the mass transfer phenomena in the reaction field, such as oxygen transport, water drainage, and electronic conductivity. The obtained results are applicable to the design requirements of ideal reaction fields, and have the potential to assist to reduce the size of the fuel cell.
Technical Paper

Indoor Pass-by Noise Evaluation System Capable of Reproducing ISO Actual Road Surface Tire Noise

2016-04-05
2016-01-0479
Generally, pass-by noise levels measured outdoors vary according to the influence of weather conditions, background noise and the driver’s skill. Manufactures, therefore, are trying to reproduce proving ground driving conditions on a chassis dynamometer. The tire noise that occurs on actual road surfaces, however, is difficult to reproduce in indoor tests. In 2016, new pass-by noise regulations (UN R51-03) will take effect in Europe, Japan and other countries. Furthermore, stricter regulations (2dB) will take effect in 2020. In addition to the acceleration runs required under current regulations, UN R51-03 will require constant speed runs. Therefore, an efficient measurement methods are necessary for vehicle development. To solve the above mentioned issues, an indoor evaluation system capable of reproducing the tire noise that occurs on road surfaces has been developed.
Journal Article

In-Situ Liquid TEM Study on the Degradation Mechanism of Fuel Cell Catalysts

2016-04-05
2016-01-1192
Electrode catalyst (platinum) degradation represents a major challenge to the performance and durability of polymer electrolyte membrane fuel cells (PEMFCs) in Fuel Cell Vehicles (FCVs). While various mechanisms have been proposed and investigated previously, there is still a need to develop in situ imaging techniques that can characterize and provide direct evidence to confirm the degradation process. In the present study, we report an in situ transmission electron microscopy (TEM) method that enables real time, high-resolution observation of carbon-supported platinum nanoparticles in liquid electrolyte under working conditions. By improving the design of the Micro Electro Mechanical Systems (MEMS) sample holder, the migration and aggregation of neighboring platinum nanoparticles could be visualized consistently and correlated to applied electrode potentials during aging process (i.e., cyclic voltammetry cycles).
Journal Article

Improving Winter Fuel Economy by Using Weather Information

2020-04-14
2020-01-1241
When the air conditioning (A/C) is turned on, the intake air to the HVAC is cooled at the evaporator. This is not only used for cooling the air temperature but also to dehumidify. Therefore, for a typical automatic climate control system, A/C will automatically operate even in winter (cold ambient temperature conditions) in order to prevent the windows from fogging despite its effect on fuel economy. In some applications, a humidity sensor is installed on top of the windshield and when the probability of fogging is low the A/C operation is disabled automatically to prevent unnecessary compressor operation which can increase fuel consumption. However, humidity sensor is not widely adopted as it requires some space to be installed and the cost is relatively expensive compared with other HVAC equipped sensors. In this study, a system was invented that disables the compressor operation when the fogging probability is low without using the conventional humidity sensor.
Technical Paper

Hot Gas Heater System

2003-03-03
2003-01-0737
As a result of recent improvements in engine efficiency, vehicle heating performance has decreased and the demand for auxiliary heat sources is increasing. To help meet this need, we have developed an auxiliary heat system known as the “Hot Gas Heater”. The Hot Gas Heater uses components common to the vehicle air-conditioning system that are not used during winter. However, there are some concerns with this system. In this paper we describe our solutions to these problems. We reduced gas flow noise through multi-stage pressure reduction, and prevented fogging by adding “water retention memory” and “evaporator outlet air temperature control” functions to the system. As a further benefit, we developed a New Accumulator Cycle that moves the cooling cycle accumulator tank to the high-pressure side.
Technical Paper

High-Pressure Hydrogen-Absorbing Alloy Tank for Fuel Cell Vehicles

2010-04-12
2010-01-0851
Multi-cylinder hydrogen-absorbing alloy tanks for fuel cell vehicles have 10 to 40 metallic cylinders that are bundled and filled with hydrogen-absorbing alloy. In this system, the cylinders themselves act as a heat exchanger and the working pressure is lowered to 10 to 20 MPa compared with high-pressure MH tanks. Moreover, both heat conduction and mass reduction can be achieved by reducing the wall thickness of the cylinders. A model verification experiment was conducted using a one-quarter-scale prototype of a full size tank, and a conduction simulation model verified in the experiment was used to predict the performance of the full size tank. Results showed that it is possible to fill the tank with hydrogen to 80% of its capacity in a five-minute filling time, although issues related to heat conductivity performance require improvement. Accordingly, it may be possible to adopt this tank as part of a system if the storage amount of the hydrogen-absorbing alloy can be increased.
Technical Paper

Enhancing PtCo Electrode Catalyst Performance for Fuel Cell Vehicle Application

2016-04-05
2016-01-1187
While carbon supported PtCo alloy nanoparticles emerged recently as the new standard catalyst for oxygen reduction reaction in polymer membrane electrolyte fuel cells, further improvement of catalyst performance is still of great importance to its application in fuel cell vehicles. Herein, we report two examples of such efforts, related to the improvements of catalyst preparation and carbon support design, respectively. First, by lowering acid treatment voltage, the effectiveness for the removal of unalloyed Co was enhanced significantly, leading to less Co dissolution during cell operation and about 40% higher catalyst mass activity. It has been also found that the use of nonporous carbon support material promoted mass transfer and resulted in substantial drop of overpotential at high current and low humidity. This result may suggest an effective strategy towards the development of fuel cell systems that operate without additional humidification.
Technical Paper

Development of the Fuel Cell System in the Mirai FCV

2016-04-05
2016-01-1185
Toyota Motor Corporation (TMC) has been developing fuel cell (FC) system technology since 1992. In 2008 the Toyota "FCHV-adv" was released as part of a demonstration program. It established major improvements in key performance areas such as cold start/drive capability, efficiency, driving range, and durability. However, in order to facilitate the commercial widespread adoption of fuel cell vehicles (FCVs), improvements in performance and further reductions in size and cost were required.In December 2014, Toyota launched the world’s first commercially available fuel cell vehicle (FCV) the "Mirai" powered by the Toyota Fuel Cell System (TFCS). Simplicity, reliability and efficiency have been significantly improved within the Toyota TFCS. As a result, the Mirai has become an attractive vehicle which could lead the way towards full-scale popularization of FCVs.
Technical Paper

Development of Two Layer Flow HVAC Unit

1999-03-01
1999-01-1199
In vehicles using a typical heating, ventilating, and air conditioning (HVAC) unit, ventilation loss through the cabin accounts for more than 60% of the heating load. This fact has increasingly important because of the low heat source characteristics of today's increasingly efficient engines. In response to this trend, a new type of air conditioning system, a “Two layer flow HVAC unit”, has been developed. This unit sends low humidity fresh intake air to the window neighborhood in order to promote good demist performance and warm recirculated air to the occupant foot area for increased efficiency. With this system, it is possible to reduce the ventilation loss by half and to raise the cabin temperature by 5°C.
Journal Article

Development of Transaxle Fluid for Electrification Vehicles: Design of Novel Additive Formulation

2022-08-30
2022-01-1102
To achieve carbon neutrality by reducing carbon dioxide (CO2) emissions, vehicles with an internal combustion engine have started to be replaced by electrification vehicles such as hybrid electric vehicles (HEVs), plug-in HEVs (PHEVs), and battery EVs (BEVs) worldwide, which have motors in their transaxles (T/As). Reducing transmission torque loss in the transaxles is effective to reduce CO2 emissions, and lowering the viscosity of lubrication fluids in T/As is a promising method for reducing churning and drag loss. However, lowering viscosity generally leads to thin oil films and makes the lubrication condition severe, resulting in worse anti-fatigue and anti-seizure performance. To deal with these issues, we made improvements on the additive formulation of fluid, such as the addition of an oil-film-forming polymer, chemical structure change of calcium detergents, and an increase of anti-wear additives including phosphorus and sulfur.
Technical Paper

Development of Thermoplastic CFRP for Stack Frame

2016-04-05
2016-01-0532
Weight reduction for a fuel cell vehicle (FCV) is important to contribute a long driving range. One approach to reduce vehicle weight involves using a carbon fiber reinforced plastic (CFRP) which has a high specific strength and stiffness. However, a conventional thermoset CFRP requires a long chemical reaction time and it is not easy to introduce into mass production vehicles. In this study, a new compression-moldable thermoplastic CFRP material for mass production body structural parts was developed and applied to the stack frame of the Toyota Mirai.
Journal Article

Development of System Control for Rapid Warm-up Operation of Fuel Cell

2012-04-16
2012-01-1230
Cold weather operation has been a major issue for fuel cell hybrid vehicles (FCHV). To counteract the effects of low temperatures on FCHV operation, an approach for rapid warm-up operation based on concentration overvoltage increase and conversion efficiency decrease by limiting oxygen or hydrogen supply was adopted. In order to suppress increases in exhaust hydrogen concentration due to pumping hydrogen during rapid warm-up, dilution control using bypass air and reduction of concentration overvoltage by a minimum voltage guard were implemented. These approaches effectively control waste heat generation and suppress exhaust hydrogen concentrations during cold start and warm-up. These developments were incorporated into the 2008 Toyota FCHV-adv and it was confirmed that the rapid warm-up operation strategy allowed the FCHV-adv to be successfully and repeatedly started at -30°C.
Technical Paper

Development of Safety Performance for FC Stack in the New Toyota FCEV

2022-03-29
2022-01-0686
The new Toyota Mirai hydrogen fuel cell electric vehicle (FCEV) was launched in December 2020. Achieving a low-cost, high-performance FC stack is an important objective in FCEV development. At the same time, it is also necessary to ensure vehicle safety. This paper presents an overview of the safety requirements for onboard FC stacks. It also describes the simulation and evaluation methods for the following matters related to the FC stack. i) Impact force resistance: The FC stack was designed to prevent cell layer slippage due to impact. Constraint force between the cell layers is provided by the frictional force between the cells and an external constraint. A simulation of the behavior of the cell layers under impact force was developed. The impact force resistance was confirmed by an impact loading test. ii) Hydrogen safety: The FC stack was designed so that permeated hydrogen is ventilated and the hydrogen concentration is kept below the standard.
Technical Paper

Development of Next Generation Fuel-Cell Hybrid System - Consideration of High Voltage System -

2004-03-08
2004-01-1304
Toyota Motor Corporation began leasing a new generation fuel cell vehicle the FCHV (Fuel Cell Hybrid Vehicle) in December 2002. That vehicle includes a new variable voltage power electronics system and uses the Nickel Metal Hydride (Ni-MH) battery system from the Prius hybrid gasoline electric vehicle. This paper describes on-going efforts to model optimum secondary storage systems for future vehicles. Efficiency modeling is presented for the base Ni-MH storage system, an ultra capacitor system and a Lithium ion (Li-ion) battery system. The Li-ion system in combination with a new high efficiency converter shows a 4% improvement in fuel economy relative to the base system. The ultra capacitor system is not as efficient as the base system.
Technical Paper

Development of New Motor for Electric Vehicles

2024-04-09
2024-01-2206
The world is currently facing environmental issues such as global warming, air pollution, and high energy demand. To mitigate these challenges, the electrification of vehicles is essential as it is effective for efficient fuel utilization and promotion of alternative fuels. The optimal approach for electrification varies across different markets, depending on local energy conditions and current circumstances. Consequently, Toyota has taken the initiative to offer a comprehensive lineup of battery electric vehicles (BEV), hybrid electric vehicles (HEV), plug-in hybrid electric vehicles (PHEV), and fuel cell electric vehicles (FCEV), aiming to provide sustainable solutions tailored to the unique situations and needs of each region. As part of this effort, Toyota has developed the 5th generation of hybrid electric vehicles. This paper describes the electric motor used in the new Toyota Camry which achieves high torque, high power, low losses, and compact design.
X