Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Soot Evolution in Multiple Injection Diesel Flames

2008-10-06
2008-01-2470
In order to meet future emission regulations, various new combustion concepts are being developed, several of which incorporate advanced diesel injection strategies, e.g. multiple injections, offering attractive potential benefits. In this study the effects of split injections on soot evolution in diesel flames were investigated in a series of flame experiments performed using a high pressure, high temperature (HP/HT) spray chamber and laser-induced incandescence apparatus to measure soot volume fractions. The focus was on split injections with varied dwell times preceded by a short pilot. The results, which were analyzed and compared to results from engine tests, show that net soot production can be decreased by applying an appropriate split injection strategy.
Technical Paper

Injection Strategy Optimization for a Light Duty DI Diesel Engine in Medium Load Conditions with High EGR rates

2009-04-20
2009-01-1441
Further restrictions on NOx emissions and the extension of current driving cycles for passenger car emission regulations to higher load operation in the near future (such as the US06 supplement to the FTP-75 driving cycle) requires attention to low emission combustion concepts in medium to high load regimes. One possibility to reduce NOx emissions is to increase the EGR rate. The combustion temperature-reducing effects of high EGR rates can significantly reduce NO formation, to the point where engine-out NOx emissions approach zero levels. However, engine-out soot emissions typically increase at high EGR levels, due to the reduced soot oxidation rates at reduced combustion temperatures and oxygen concentrations.
Technical Paper

Gasoline HCCI Modeling: Computer Program Combining Detailed Chemistry and Gas Exchange Processes

2001-09-24
2001-01-3614
A skeletal reaction mechanism (101 species, 479 reactions) for a range of aliphatic hydrocarbons was constructed for application to computational fluid dynamics (CFD) Gasoline Homogeneous Charge Compression Ignition (HCCI) engine modeling. The mechanism is able to predict shock tube ignition delays and premixed flame propagation velocities for the following components: hydrogen (H2), methane (CH4), acetylene (C2H2), propane (C3H8), n-heptane (C7H16) and iso-octane (C8H18). The mechanism is integrated with a simulation code combining both modeling of detailed chemistry and gas exchange processes. This simulation tool was constructed by connecting the SENKIN code of the CHEMKIN library to the AVL BOOST™ engine cycle simulation code. Using a complete engine cycle simulation code instead of a code that only considers the combustion process has a major advantage. The initial conditions at the intake valve closure (IVC) have no longer to be set.
Technical Paper

Gasoline HCCI Modeling: An Engine Cycle Simulation Code with a Multi-Zone Combustion Model

2002-05-06
2002-01-1745
For the application to Gasoline Homogenous Charge Compression Ignition (HCCI) modeling, a multi-zone model was developed. For this purpose, the detailed-chemistry code SENKIN from the CHEMKIN library was modified. In a previous paper, the authors explained how piston motion and a heat transfer model were implemented in the SENKIN code to make it applicable to engine modeling. The single-zone model developed was successfully implemented in the engine cycle simulation code AVL BOOST™. A multi-zone model, including a crevice volume, a quench layer and multiple core zones, is introduced here. A temperature distribution specified over these zones gives this model a wider range of application than the single-zone model, since fuel efficiency, emissions and heat release can now be predicted more accurately. The SENKIN-BOOST multi-zone model predictions are compared with experimental data.
Technical Paper

Fuel Flow Impingement Measurements on Multi-Orifice Diesel Nozzles

2006-04-03
2006-01-1552
The injection process plays an important role in Diesel engines in terms of future emission legislations. Higher injection pressures and multiple injection events every cycle are a reality. To be able to understand how the fuel injection process can be further improved studies are needed on how higher pressure, multiple injections and multi orifice nozzles affect the overall process. The objective of this study was to further develop a measurement technique to determine injection rates and discharge coefficient for multi orifice nozzles. The technique used is based on measuring the instantaneous force of a fuel jet for a non-stationary injection process. The technique is applicable for multi orifice nozzles at high injection pressures. Both single and multiple injections can be resolved.
Technical Paper

Experimental and Numerical Investigation of Split Injections at Low Load in an HDDI Diesel Engine Equipped with a Piezo Injector

2006-10-16
2006-01-3433
In order to investigate the effects of split injection on emission formation and engine performance, experiments were carried out using a heavy duty single cylinder diesel engine. Split injections with varied dwell time and start of injection were investigated and compared with single injection cases. In order to isolate the effect of the selected parameters, other variables were kept constant. In this investigation no EGR was used. The engine was equipped with a common rail injection system with a piezo-electric injector. To interpret the observed phenomena, engine CFD simulations using the KIVA-3V code were also made. The results show that reductions in NOx emissions and brake specific fuel consumption were achieved for short dwell times whereas they both were increased when the dwell time was prolonged. No EGR was used so the soot levels were already very low in the cases of single injections.
Technical Paper

Effects of Multiple Injections on Engine-Out Emission Levels Including Particulate Mass from an HSDI Diesel Engine

2007-04-16
2007-01-0910
The effects of multiple injections on engine-out emissions from a high-speed direct injection (HSDI) diesel engine were investigated in a series of experiments using a single cylinder research engine. Injection sequences in which the main injection was split into two, three and four pulses were tested and the resulting emissions (NOx, CO HC and particulate matter), torque and cylinder pressures were compared to those obtained with single injections. Together with the number of injections, the effects of varying the dwell time were also investigated. It was found that dividing the main injection into two parts lowered the engine-out particulate and CO emissions and increased fuel efficiency. However, it also resulted in increased NOx emissions.
Technical Paper

A Novel Concept for Combined Hydrogen Production and Power Generation

2009-06-15
2009-01-1946
A novel concept of combined hydrogen production and power generation system based on the combustion of aluminum in water is explored. The energy conversion system proposed is potentially able to provide four different energy sources, such us pressurized hydrogen, high temperature steam, heat, and work at the crankshaft on demand, as well as to fully comply with the environment sustainability requirements. Once aluminum oxide layer is removed, the pure aluminum can react with water producing alumina and hydrogen while releasing a significant amount of energy. Thus, the hydrogen can be stored for further use and the steam can be employed for energy generation or work production in a supplementary power system. The process is proved to be self-sustained and to provide a remarkable amount of energy available as work or hydrogen.
X