Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Washcoat Technology and Precious Metal Loading Study Targeting the California LEV MDV2 Standard

1996-10-01
961904
Meeting the California Medium-Duty truck emissions standards presents a significant challenge to automotive engineers due to the combination of sustained high temperature exhaust conditions, high flow rates and relatively high engine out emissions. A successful catalyst for an exhaust treatment system must be resistant to high temperature deactivation, maintain cold start performance and display high three-way conversion efficiencies under most operating conditions. This paper describes a catalyst technology and precious metal loading study targeting a California Medium-Duty truck LEV (MDV2) application. At the same time a direction is presented for optimizing toward the Federal Tier 1 standard through reduction of precious metal use. The paper identifies catalytic formulations for a twin substrate, 1.23 L medium-coupled converter. Two are used per vehicle, mounted 45 cm downstream of each manifold on a 5.7 L V8 engine.
Technical Paper

Virtual Chip Test and Washer Simulation for Machining Chip Cleanliness Management Using Particle-Based CFD

2024-04-09
2024-01-2730
Metal cutting/machining is a widely used manufacturing process for producing high-precision parts at a low cost and with high throughput. In the automotive industry, engine components such as cylinder heads or engine blocks are all manufactured using such processes. Despite its cost benefits, manufacturers often face the problem of machining chips and cutting oil residue remaining on the finished surface or falling into the internal cavities after machining operations, and these wastes can be very difficult to clean. While part cleaning/washing equipment suppliers often claim that their washers have superior performance, determining the washing efficiency is challenging without means to visualize the water flow. In this paper, a virtual engineering methodology using particle-based CFD is developed to address the issue of metal chip cleanliness resulting from engine component machining operations. This methodology comprises two simulation methods.
Technical Paper

Using Engine as Torsional Shaker for Vehicle Sensitivity Refinement at Idle Conditions

2007-05-15
2007-01-2319
Vehicle idle quality has become an increasing quality concern for automobile manufacturers because of its impact on customer satisfaction. There are two factors that critical to vehicle idle quality, the engine excitation force and vehicle sensitivity (transfer function). To better understand the contribution to the idle quality from these two factors and carry out well-planned improvement measures, a quick and easy way to measure vehicle sensitivity at idle conditions is desired. There are several different ways to get vehicle sensitivity at idle conditions. A typical way is to use CAE. One of the biggest advantages using CAE is that it can separate vehicle sensitivities to different forcing inputs. As always, the CAE results need to be validated before being fully utilized. Another way to get vehicle sensitivity is through impact test using impact hammer or shaker. However this method doesn't include the mount preload due to engine firing torque [3, 4, & 5].
Technical Paper

Up-Front Prediction of the Effects of Cylinder Head Design on Combustion Rates in SI Engines

1998-02-23
981049
Accurate prediction of engine combustion characteristics, especially burn rates, can eliminate a number of hardware iterations, thus resulting in a significant reduction in design and developmental time and cost. An analytical methodology has been developed which allows the determination of part-load MBT spark timing to within 2 crank-angle degrees. The design methodology employs the in-house-developed steady-state quasi-dimensional engine simulation model (GESIM), coupled with full-field measurement of the in-cylinder fluid motion at bottom dead center (BDC) in the computer-controlled water analog system (AquaDyne). The in-cylinder flow-field measurements are obtained using 3-D Particle Tracking Velocimetry (3-D PTV), also developed in-house. In this methodology, the in-cylinder flow measurement data are used to calibrate both the tumble and swirl models in GESIM.
Technical Paper

Understanding of Intake Cam Phasing Effects on the Induction and Fuel-Air Mixing in a DISI Engine

2004-06-08
2004-01-1947
Variable Cam Timing (VCT) has been proven to be a very effective method in PFI (Port Fuel Injection) engines for improved fuel economy and combustion stability, and reduced emissions. In DISI (Direct Injection Spark Ignition) engines, VCT is applied in both stratified-charge and homogeneous charge operating modes. In stratified-charge mode, VCT is used to reduce NOx emission and improve combustion stability. In homogeneous charge mode, the function of VCT is similar to that in PFI engines. In DISI engine, however, the VCT also affects the available fuel-air mixing time. This paper focuses on VCT effects on the induction process and the fuel-air mixing homogeneity in a DISI engine. The detailed induction process with large exhaust-intake valve overlap has been investigated with CFD modeling. Seven characteristic sub-processes during the induction have been identified. The associated mechanism for each sub-process is also investigated.
Technical Paper

Transient Non-linear FEA and TMF Life Estimates of Cast Exhaust Manifolds

2003-03-03
2003-01-0918
A transient nonlinear Finite Element Analysis (FEA) method has been developed to simulate the inelastic deformation and estimate the thermo-mechanical fatigue life of cast iron and cast steel exhaust manifolds under dynamometer test conditions. The FEA uses transient heat transfer analysis to simulate the thermal loads on the manifold, and includes the fasteners, gasket and portion of the cylinder head. The analysis incorporates appropriate elastic-plastic and creep material models. It is shown that the creep deformation is the most single critical component of inelastic deformation for cast iron manifold ratcheting, gasket sealing, and crack initiation. The predicted transient temperature field and manifold deformation of the FEA model compares exceptionally well with two experimental tests for a high silicon-molybdenum exhaust manifold.
Technical Paper

Transient Fuel Modeling and Control for Cold Start Intake Cam Phasing

2006-04-03
2006-01-1049
Advancing intake valve timing shortly after engine crank and run-up can potentially reduce vehicle cold start hydrocarbon (HC) emissions in port fuel injected (PFI) engines equipped with intake variable cam timing (iVCT). Due to the cold metal temperatures, there can be significant accumulation of liquid fuel in the intake system and in the cylinder. This accumulation of liquid fuel provides potential sources for unburned hydrocarbons (HCs). Since the entire vehicle exhaust system is cold, the catalyst will not mitigate the release of unburned HCs. By advancing the intake valve timing and increasing valve overlap, liquid fuel vaporization in the intake system is enhanced thereby increasing the amount of burnable fuel in the cylinder. This increase in burnable HCs must be countered by a reduction in injector-delivered fuel via a compensator that reacts to cam movement.
Technical Paper

Thermal Fatigue Analysis of Cast Aluminum Cylinder Heads

2002-03-04
2002-01-0657
Thermal fatigue presents a new challenge in cast aluminum engine design. Accurate thermomechanical stress analysis and reliable failure criterion are the keys to a successful life prediction. It is shown that the material stress and strain behavior of cast aluminum is strongly temperature and strain rate sensitive. A unified viscoplasticity constitutive relation is thus proposed to simultaneously describe the plasticity and creep of cast aluminum components deforming at high temperatures. A fatigue failure criterion based on a damage accumulation model is introduced. Damages due to mechanical fatigue, environmental impact and creep are accounted for. The material stress and strain model and thermal fatigue model are shown to be effective in accurately capturing features of thermal fatigue by simulating a component thermal fatigue test using 3D FEA with ABAQUS and comparing the results with measured data.
Technical Paper

The Volume Acoustic Modes of Spark-Ignited Internal Combustion Chambers

1998-02-23
980893
Acoustic standing waves are excited in internal combustion chambers by both normal combustion and autoignition. The energy in these acoustic modes can be transmitted through the engine block and radiated as high-frequency engine noise. Using finite-element models of two different (four-valve and two-valve) production engine combustion chambers, the mode shapes and relative frequencies of the in-cylinder volume acoustic modes are calculated as a function of crank angle. The model is validated by comparison to spectrograms of experimental time-sampled waveforms (from flush-mounted cylinder pressure sensors and accelerometers) from these two typical production spark-ignited engines.
Technical Paper

The Northstar DOHC V-8 Engine for Cadillac

1992-02-01
920671
General Motors Powertrain Division has developed a new V-8 engine for Cadillac vehicles in the 1990s. The Northstar engine incorporates the use of aluminum for both the cylinder block and head and other lightweight materials throughout. The valve train incorporates direct acting hydraulic lifters actuating the four valves per cylinder through dual overhead camshafts. The primary focus of the project has been to produce an engine of unquestioned reliability and exceptional value which is pleasing to the customer throughout the range of loads and speeds. The engine was designed with a light weight valve train, low valve overlap and moderate lift, resulting in a very pleasing combination of smooth idle and a broad range of power. The use of analytical methods early in the design stage enabled systems to be engineered to optimize reliability, pleaseability and value by reducing frictional losses, noise, and potential leak paths, while increasing efficiency and ease of manufacture.
Technical Paper

The Influence of Cooling System Variables

1978-02-01
780595
A vehicle fleet test has been conducted to determine if octane advantages due to selected cooling system variables persist with stabilized deposits. The variables tested were reduced coolant temperatures, a direct substitution of aluminum for the iron cylinder head and an aluminum head with Unique Cooling. Octane requirements, octane requirement increase (ORI), emissions and fuel economy results are presented and discussed. Engine tests to determine the sensitivity of octane to independently controlled engine temperatures confirmed the primary dependence upon coolant temperature. Additional tests identified some of the variables which cause octane differences among the cylinders of one engine and between engine families.
Technical Paper

The Effects of Load Control with Port Throttling at Idle- Measurements and Analyses

1989-02-01
890679
An experimental and analytical study was conducted to investigate the effects of load control with port throttling on stability and fuel consumption at idle. With port throttling, the pressure in the intake port increases during the valve-closed period due to flow past the throttle. If the pressure in the port recovers to ambient before the valve overlap period, back flow into the intake system from the cylinder is eliminated. This allows increased valve overlap to be used without increasing the residual mass fraction in the cylinder. Results showed that, with high valve overlap and port throttling, idle stability and fuel consumption can be maintained at values associated with low overlap in a conventionally throttled engine. However, implementation of this concept in production is regarded to require precision-fit and balanced port throttles, an external vacuum pump for vacuum systems support, and revision of the PCV system.
Technical Paper

The Effect of Fuel Injection on the Velocity Fluctuations in the Bowl of a DISI Engine

2005-05-11
2005-01-2102
Swirl plane Particle Image Velocimetry (PIV) measurements were performed in a single-cylinder optically accessible gasoline direct injection (DISI) engine using a borescope introduced through the spark plug hole. This allowed the use of a contoured piston and the visualization of the flow field in and around the piston bowl. The manifold absolute pressure (MAP) was fixed at 90 kPa and the engine speed was varied in increments of 250 rpm from 750 rpm to 2000 rpm. Images were taken from 270° to 320° bTDC of compression at 10° intervals to study the evolution of the velocity fluctuations. Measurements were performed with and without fuel injection to study its effect on the in-cylinder flow fields. Fuel was injected at 10 MPa and 5 MPa. The 2-D spatial mean velocities of individual flow fields and their decompositions were averaged over 100 cycles and used to investigate the effects of engine speed and image timing on the flow field.
Technical Paper

Robust Piston Design and Optimization Using Piston Secondary Motion Analysis

2003-03-03
2003-01-0148
To address the conflicting goals of minimal piston friction and minimal piston noise, a dynamic power cylinder model was developed to predict piston motion and side loads within the cylinder. This correlated model was the basis of a comprehensive analytical design of experiments (DOE) where both piston noise and piston friction were monitored. The results of the DOE were used to generate metamodels for piston friction and for piston noise. To insure design robustness, variability was introduced into the surrogate models via First Order Reliability Method (FORM). A Pareto curve using 99% probability was constructed and a piston robust to both noise and friction was selected.
Journal Article

Residual Stress Analysis of Air-Quenched Engine Aluminum Cylinder Heads

2008-04-14
2008-01-1420
Residual stress of an air quenched engine cylinder head is studied in the present paper. The numerical simulation is accomplished by sequential thermal and stress analyses. Thermal history of the cylinder head is simulated by using the commercial Computation Fluid Mechanics (CFD) code FLUENT. The only parameter adjustable in the analysis is the incoming air speed. Predicted temperatures at two locations are comparable with available thermocouple data. Stress analysis is performed using ABAQUS with a Ford proprietary material constitutive relation, which is based on coupon tests on the as-solution treated material. Both temperature and strain rate impacts on material behavior of the as-solution treated material are considered in the stress and strain model. Predicted residual strain is shown to be consistent with measured data, which is obtained by using strain gauging and sectioning method.
Technical Paper

Reducing Catalyst Zone Flow for Robust Emissions Performance in the Presence of Engine Air Fuel Ratio Imbalance

2017-03-28
2017-01-0961
In recent years, the EPA has implemented a requirement for monitoring the air fuel ratio balance in multi-cylinder engines such that those imbalances may not be so great as to cause the tailpipe emissions level to exceed 1.5 times the nominal emissions standard. Such imbalances may be the result of production fuel injector variation, contamination, leaks, or other malfunctions which cause the air or fuel rate to vary across the cylinders controlled by a single oxygen sensor. For many diagnostic systems that rely on the signal from the oxygen sensor, to achieve compliance to the new diagnostic standard, the sensor must see the signal from each cylinder equally. The aftertreatment system must also be robust to individual cylinder air fuel ratio variation. This paper introduces the concept of catalyst zone flow, a condition in which different cylinders of a multi-cylinder engine use different portions of the catalyst brick.
Technical Paper

Redesign of an Exhaust Manifold Outlet Fastener Using Robust Design Techniques

2000-03-06
2000-01-0917
An L16 orthogonal array parameter Design of Experiment (DOE) evaluated six design parameters of the mating thread interface between the exhaust manifold outlet flange and jointing stainless steel fastener. The objective of this study was to identify optimal parameters for the redesign the thread interface by ensuring 100% seating of the fastener into the manifold flange (here after referred to as stud seating). Since the current fastener and manifold outlet flange interface threads do not always achieve the design objectives, due in part to a form of abrasive wear, consideration was given to develop a testing strategy that would quantify the amount of remaining thread engagement for a given stud length. This testing strategy ensured that the control parameters considered in this experiment would reveal main effects and interactions between the stud and tapped hole threads thus providing the necessary parameters for the redesign on the joint threads.
Journal Article

Quantitative Analysis of Gasoline Direct Injection Engine Emissions for the First 5 Firing Cycles of Cold Start

2021-04-06
2021-01-0536
A series of cold start experiments using a 2.0 liter gasoline turbocharged direct injection (GTDI) engine with custom controls and calibration were carried out using gasoline and iso-pentane fuels, to obtain the cold start emissions profiles for the first 5 firing cycles at an ambient temperature of 22°C. The exhaust gases, both emitted during the cold start firing and emitted during the cranking process right after the firing, were captured, and unburned hydrocarbon emissions (HC), CO, and CO2 on a cycle-by-cycle basis during an engine cold start were analyzed and quantified. The HCs emitted during gasoline-fueled cold starts was found to reduce significantly as the engine cycle increased, while CO and CO2 emissions were found to stay consistent for each cycle. Crankcase ventilation into the intake manifold through the positive-crankcase ventilation (PCV) valve system was found to have little effect on the emissions results.
Technical Paper

Pressure Reactive Piston Technology Investigation and Development for Spark Ignition Engines

2005-04-11
2005-01-1648
Variable Compression Ratio (VCR) technology has long been recognized as a method of improving Spark Ignition (SI) engine fuel economy. The Pressure Reactive Piston (PRP) assembly features a two-piece piston, with a piston crown and separate piston skirt which enclose a spring set between them. The unique feature is that the upper piston reacts to the cylinder pressure, accommodating rapid engine load changes passively. This mechanism effectively limits the peak pressures at high loads without an additional control device, while allowing the engine to operate at high compression ratio during low load conditions. Dynamometer engine testing showed that Brake Specific Fuel Consumption (BSFC) improvement of the PRP over the conventional piston ranged from 8 to 18 % up to 70% load. Knock free full load operation was also achieved. The PRP equipped engine combustion is characterized by reverse motion of the piston crown near top dead center and higher thermal efficiency.
Technical Paper

Powerplant Block-Crank Dynamic Interaction and Radiated Noise Prediction

2003-05-05
2003-01-1735
This paper discusses flexible, multi-body, coupled dynamic simulation of a crankshaft system acting upon a power plant structure that includes an engine block, cylinder heads, oil pan, crank train (i.e., crankshaft, connecting rods, bearings etc.) and transmission. The simulation is conducted using AVL/EXCITE [1]. Engine loads are first predicted, and then used to compute radiated noise from the engine assembly. Radiated noise level is computed by sweeping the excitation frequency through a range associated with the normal operating RPM of the engine. The results of the radiated noise computation are plotted on a “3D” Campbell plot diagram. The effects of different crankshaft materials is evaluated by imposing steel and cast iron material properties on the analysis model. A design of experiment (DOE) study is also performed to investigate the effects of main and rod bearing clearance, damper, and flexplate design on overall engine radiated sound power.
X