Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Virtual Chip Test and Washer Simulation for Machining Chip Cleanliness Management Using Particle-Based CFD

2024-04-09
2024-01-2730
Metal cutting/machining is a widely used manufacturing process for producing high-precision parts at a low cost and with high throughput. In the automotive industry, engine components such as cylinder heads or engine blocks are all manufactured using such processes. Despite its cost benefits, manufacturers often face the problem of machining chips and cutting oil residue remaining on the finished surface or falling into the internal cavities after machining operations, and these wastes can be very difficult to clean. While part cleaning/washing equipment suppliers often claim that their washers have superior performance, determining the washing efficiency is challenging without means to visualize the water flow. In this paper, a virtual engineering methodology using particle-based CFD is developed to address the issue of metal chip cleanliness resulting from engine component machining operations. This methodology comprises two simulation methods.
Technical Paper

Validation of SEA Wind Noise Model for a Design Change

2003-05-05
2003-01-1552
A wind noise model of a vehicle has been developed using Statistical Energy Analysis (SEA) with measured turbulent pressure data as the source input. Empirical formulas are used to scale the input data for changes in flow and design parameters. Wind tunnel tests have been conducted on a standard and modified vehicle to validate the SEA model and the input scaling. The results show good correlation with both the exterior turbulent pressure levels and the interior sound pressure levels across the audio frequency range.
Technical Paper

Using Engine as Torsional Shaker for Vehicle Sensitivity Refinement at Idle Conditions

2007-05-15
2007-01-2319
Vehicle idle quality has become an increasing quality concern for automobile manufacturers because of its impact on customer satisfaction. There are two factors that critical to vehicle idle quality, the engine excitation force and vehicle sensitivity (transfer function). To better understand the contribution to the idle quality from these two factors and carry out well-planned improvement measures, a quick and easy way to measure vehicle sensitivity at idle conditions is desired. There are several different ways to get vehicle sensitivity at idle conditions. A typical way is to use CAE. One of the biggest advantages using CAE is that it can separate vehicle sensitivities to different forcing inputs. As always, the CAE results need to be validated before being fully utilized. Another way to get vehicle sensitivity is through impact test using impact hammer or shaker. However this method doesn't include the mount preload due to engine firing torque [3, 4, & 5].
Technical Paper

Use of Body Mount Stiffness and Damping In CAE Crash Modeling

2000-03-06
2000-01-0120
This paper reports a study of the dynamic characteristics of body mounts in body on frame vehicles and their effects on structural and occupant CAE results. The body mount stiffness and damping are computed from spring-damper models and component test results. The model parameters are converted to those used in the full vehicle structural model to simulate the vehicle crash performance. An effective body mount in a CAE crash model requires a set of coordinated damping and stiffness to transfer the frame pulse to the body. The ability of the pulse transfer, defined as transient transmissibility[1]1, is crucial in the early part of the crash pulse prediction using a structural model such as Radioss[2]. Traditionally, CAE users input into the model the force-deflection data of the body mount obtained from the component and/or full vehicle tests. In this practice, the body mount in the CAE model is essentially represented by a spring with the prescribed force-deflection data.
Technical Paper

Up-Front Prediction of the Effects of Cylinder Head Design on Combustion Rates in SI Engines

1998-02-23
981049
Accurate prediction of engine combustion characteristics, especially burn rates, can eliminate a number of hardware iterations, thus resulting in a significant reduction in design and developmental time and cost. An analytical methodology has been developed which allows the determination of part-load MBT spark timing to within 2 crank-angle degrees. The design methodology employs the in-house-developed steady-state quasi-dimensional engine simulation model (GESIM), coupled with full-field measurement of the in-cylinder fluid motion at bottom dead center (BDC) in the computer-controlled water analog system (AquaDyne). The in-cylinder flow-field measurements are obtained using 3-D Particle Tracking Velocimetry (3-D PTV), also developed in-house. In this methodology, the in-cylinder flow measurement data are used to calibrate both the tumble and swirl models in GESIM.
Technical Paper

Transient Fuel Modeling and Control for Cold Start Intake Cam Phasing

2006-04-03
2006-01-1049
Advancing intake valve timing shortly after engine crank and run-up can potentially reduce vehicle cold start hydrocarbon (HC) emissions in port fuel injected (PFI) engines equipped with intake variable cam timing (iVCT). Due to the cold metal temperatures, there can be significant accumulation of liquid fuel in the intake system and in the cylinder. This accumulation of liquid fuel provides potential sources for unburned hydrocarbons (HCs). Since the entire vehicle exhaust system is cold, the catalyst will not mitigate the release of unburned HCs. By advancing the intake valve timing and increasing valve overlap, liquid fuel vaporization in the intake system is enhanced thereby increasing the amount of burnable fuel in the cylinder. This increase in burnable HCs must be countered by a reduction in injector-delivered fuel via a compensator that reacts to cam movement.
Technical Paper

Transfer Function Development in Design for Six Sigma Framework - Part I

2005-04-11
2005-01-1215
Transfer functions, one of core components in Design for Six Sigma (DFSS), provide the needed relationships between design, process and materials parameters and the CTQs (Critical-to-Quality characteristics) in the product and process development cycle. Transfer function provides direct method for understanding and representing an over all product and process function. Transfer function also provides a strategy for customer voice cascade, function decomposition, physical modeling and concept generation. The concept of transfer function is not new. However, the development of transfer function is not trivial and is a creative and challenging task. In part I of this paper, we will discuss how to develop a transfer function in the DFSS framework. In part II of this paper, we devote our efforts in the discussion of selecting the best transfer function for design evaluation and optimization.
Technical Paper

Thermal Fatigue Analysis of Cast Aluminum Cylinder Heads

2002-03-04
2002-01-0657
Thermal fatigue presents a new challenge in cast aluminum engine design. Accurate thermomechanical stress analysis and reliable failure criterion are the keys to a successful life prediction. It is shown that the material stress and strain behavior of cast aluminum is strongly temperature and strain rate sensitive. A unified viscoplasticity constitutive relation is thus proposed to simultaneously describe the plasticity and creep of cast aluminum components deforming at high temperatures. A fatigue failure criterion based on a damage accumulation model is introduced. Damages due to mechanical fatigue, environmental impact and creep are accounted for. The material stress and strain model and thermal fatigue model are shown to be effective in accurately capturing features of thermal fatigue by simulating a component thermal fatigue test using 3D FEA with ABAQUS and comparing the results with measured data.
Technical Paper

The Volume Acoustic Modes of Spark-Ignited Internal Combustion Chambers

1998-02-23
980893
Acoustic standing waves are excited in internal combustion chambers by both normal combustion and autoignition. The energy in these acoustic modes can be transmitted through the engine block and radiated as high-frequency engine noise. Using finite-element models of two different (four-valve and two-valve) production engine combustion chambers, the mode shapes and relative frequencies of the in-cylinder volume acoustic modes are calculated as a function of crank angle. The model is validated by comparison to spectrograms of experimental time-sampled waveforms (from flush-mounted cylinder pressure sensors and accelerometers) from these two typical production spark-ignited engines.
Technical Paper

The Northstar DOHC V-8 Engine for Cadillac

1992-02-01
920671
General Motors Powertrain Division has developed a new V-8 engine for Cadillac vehicles in the 1990s. The Northstar engine incorporates the use of aluminum for both the cylinder block and head and other lightweight materials throughout. The valve train incorporates direct acting hydraulic lifters actuating the four valves per cylinder through dual overhead camshafts. The primary focus of the project has been to produce an engine of unquestioned reliability and exceptional value which is pleasing to the customer throughout the range of loads and speeds. The engine was designed with a light weight valve train, low valve overlap and moderate lift, resulting in a very pleasing combination of smooth idle and a broad range of power. The use of analytical methods early in the design stage enabled systems to be engineered to optimize reliability, pleaseability and value by reducing frictional losses, noise, and potential leak paths, while increasing efficiency and ease of manufacture.
Technical Paper

The Influence of Cooling System Variables

1978-02-01
780595
A vehicle fleet test has been conducted to determine if octane advantages due to selected cooling system variables persist with stabilized deposits. The variables tested were reduced coolant temperatures, a direct substitution of aluminum for the iron cylinder head and an aluminum head with Unique Cooling. Octane requirements, octane requirement increase (ORI), emissions and fuel economy results are presented and discussed. Engine tests to determine the sensitivity of octane to independently controlled engine temperatures confirmed the primary dependence upon coolant temperature. Additional tests identified some of the variables which cause octane differences among the cylinders of one engine and between engine families.
Technical Paper

The Effects of Load Control with Port Throttling at Idle- Measurements and Analyses

1989-02-01
890679
An experimental and analytical study was conducted to investigate the effects of load control with port throttling on stability and fuel consumption at idle. With port throttling, the pressure in the intake port increases during the valve-closed period due to flow past the throttle. If the pressure in the port recovers to ambient before the valve overlap period, back flow into the intake system from the cylinder is eliminated. This allows increased valve overlap to be used without increasing the residual mass fraction in the cylinder. Results showed that, with high valve overlap and port throttling, idle stability and fuel consumption can be maintained at values associated with low overlap in a conventionally throttled engine. However, implementation of this concept in production is regarded to require precision-fit and balanced port throttles, an external vacuum pump for vacuum systems support, and revision of the PCV system.
Technical Paper

Structural Analysis Based Sensor Placement for Diagnosis of Clutch Faults in Automatic Transmissions

2018-04-03
2018-01-1357
This paper describes a systematic approach to identify the best sensor combination by performing sensor placement analysis to detect and isolate clutch stuck-off faults in Automatic Transmissions (AT) based on structural analysis. When an engaged clutch in the AT loses pressure during operation, it is classified as a clutch stuck-off fault. AT can enter in neutral state because of these faults; causing loss of power at wheels. Identifying the sensors to detect and isolate these faults is important in the early stage of the AT development. A universal approach to develop a structural model of an AT is presented based on the kinematic relationships of the planetary gear set elements. Sensor placement analysis is then performed to determine the sensor locations to detect and isolate the clutch stuck-off faults using speed sensors and clutch pressure sensors. The proposed approach is then applied to a 10-Speed AT to demonstrate its effectiveness.
Technical Paper

Robust Piston Design and Optimization Using Piston Secondary Motion Analysis

2003-03-03
2003-01-0148
To address the conflicting goals of minimal piston friction and minimal piston noise, a dynamic power cylinder model was developed to predict piston motion and side loads within the cylinder. This correlated model was the basis of a comprehensive analytical design of experiments (DOE) where both piston noise and piston friction were monitored. The results of the DOE were used to generate metamodels for piston friction and for piston noise. To insure design robustness, variability was introduced into the surrogate models via First Order Reliability Method (FORM). A Pareto curve using 99% probability was constructed and a piston robust to both noise and friction was selected.
Journal Article

Residual Stress Analysis of Air-Quenched Engine Aluminum Cylinder Heads

2008-04-14
2008-01-1420
Residual stress of an air quenched engine cylinder head is studied in the present paper. The numerical simulation is accomplished by sequential thermal and stress analyses. Thermal history of the cylinder head is simulated by using the commercial Computation Fluid Mechanics (CFD) code FLUENT. The only parameter adjustable in the analysis is the incoming air speed. Predicted temperatures at two locations are comparable with available thermocouple data. Stress analysis is performed using ABAQUS with a Ford proprietary material constitutive relation, which is based on coupon tests on the as-solution treated material. Both temperature and strain rate impacts on material behavior of the as-solution treated material are considered in the stress and strain model. Predicted residual strain is shown to be consistent with measured data, which is obtained by using strain gauging and sectioning method.
Technical Paper

Reduction of Computational Efforts to Obtain Parasitic Capacitances Using FEM in Three-Phase Permanent Magnet Motors

2024-04-09
2024-01-2742
The rise in demand for electric and hybrid vehicles, the issue of bearing currents in electric motors has become increasingly relevant. These vehicles use inverters with high frequency switch that generates the common mode voltage and current, the main factor responsible for bearing issues. In the machine structure, there are some parasitic capacitances that exist inherently. They provide a low impedance path for the generated current, which flows through the machine bearing. Investigating this problem in practical scenarios during the design stage is costly and requires great effort to measure these currents. For this reason, a strategy of analysis aided by electromagnetic simulation software can achieve desired results in terms of complexity and performance. This work proposes a methodology using Ansys Maxwell software to simulate two-dimensional (2D) and three-dimensional (3D) model of a three-phase permanent magnet motor with eight poles.
Technical Paper

Reducing Catalyst Zone Flow for Robust Emissions Performance in the Presence of Engine Air Fuel Ratio Imbalance

2017-03-28
2017-01-0961
In recent years, the EPA has implemented a requirement for monitoring the air fuel ratio balance in multi-cylinder engines such that those imbalances may not be so great as to cause the tailpipe emissions level to exceed 1.5 times the nominal emissions standard. Such imbalances may be the result of production fuel injector variation, contamination, leaks, or other malfunctions which cause the air or fuel rate to vary across the cylinders controlled by a single oxygen sensor. For many diagnostic systems that rely on the signal from the oxygen sensor, to achieve compliance to the new diagnostic standard, the sensor must see the signal from each cylinder equally. The aftertreatment system must also be robust to individual cylinder air fuel ratio variation. This paper introduces the concept of catalyst zone flow, a condition in which different cylinders of a multi-cylinder engine use different portions of the catalyst brick.
Technical Paper

Pressure Reactive Piston Technology Investigation and Development for Spark Ignition Engines

2005-04-11
2005-01-1648
Variable Compression Ratio (VCR) technology has long been recognized as a method of improving Spark Ignition (SI) engine fuel economy. The Pressure Reactive Piston (PRP) assembly features a two-piece piston, with a piston crown and separate piston skirt which enclose a spring set between them. The unique feature is that the upper piston reacts to the cylinder pressure, accommodating rapid engine load changes passively. This mechanism effectively limits the peak pressures at high loads without an additional control device, while allowing the engine to operate at high compression ratio during low load conditions. Dynamometer engine testing showed that Brake Specific Fuel Consumption (BSFC) improvement of the PRP over the conventional piston ranged from 8 to 18 % up to 70% load. Knock free full load operation was also achieved. The PRP equipped engine combustion is characterized by reverse motion of the piston crown near top dead center and higher thermal efficiency.
Journal Article

Predicting Stress vs. Strain Behaviors of Thin-Walled High Pressure Die Cast Magnesium Alloy with Actual Pore Distribution

2016-04-05
2016-01-0290
In this paper, a three-dimensional (3D) microstructure-based finite element modeling method (i.e., extrinsic modeling method) is developed, which can be used in examining the effects of porosity on the ductility/fracture of Mg castings. For this purpose, AM60 Mg tensile samples were generated under high-pressure die-casting in a specially-designed mold. Before the tensile test, the samples were CT-scanned to obtain the pore distributions within the samples. 3D microstructure-based finite element models were then developed based on the obtained actual pore distributions of the gauge area. The input properties for the matrix material were determined by fitting the simulation result to the experimental result of a selected sample, and then used for all the other samples’ simulation. The results show that the ductility and fracture locations predicted from simulations agree well with the experimental results.
Technical Paper

Practical Modeling and Simulation of Permanent Magnet Direct Current (PMDC) Motors

2003-03-03
2003-01-0089
Electrical Computer Aided Engineering (CAE) is necessary and useful for the automotive industry [1,2]. It provides the user with necessary information that helps him/her make faster and more certain design decisions. CAE facilitates for the user options and the means to locate and choose optimums [6]. It requires models that best represent the actual system while avoiding unnecessary numerical overhead. Therefore, it is necessary to build the mathematical model in a systematic way that captures dynamics of the actual system [3]. Also, an optimal solution for the system parameters is required to increase the accuracy of the model and to make a correct decision while designing, testing, and validating [3,6]. This paper studies the CAE analysis of a PMDC motor. It develops a systematic approach to model, simulate and analyze PMDC motors with robust output. It enhances the accuracy of PMDC to a 6-Sigma level.
X