Refine Your Search

Topic

Search Results

Journal Article

Well-to-Wheels Analysis of the Greenhouse Gas Emissions and Energy Use of Vehicles with Gasoline Compression Ignition Engines on Low Octane Gasoline-Like Fuel

2016-10-17
2016-01-2208
Gasoline Compression Ignition (GCI) engines using a low octane gasoline-like fuel (LOF) have good potential to achieve lower NOx and lower particulate matter emissions with higher fuel efficiency compared to the modern diesel compression ignition (CI) engines. In this work, we conduct a well-to-wheels (WTW) analysis of the greenhouse gas (GHG) emissions and energy use of the potential LOF GCI vehicle technology. A detailed linear programming (LP) model of the US Petroleum Administration for Defense District Region (PADD) III refinery system - which produces more than 50% of the US refined products - is modified to simulate the production of the LOF in petroleum refineries and provide product-specific energy efficiencies. Results show that the introduction of the LOF production in refineries reduces the throughput of the catalytic reforming unit and thus increases the refinery profit margins.
Technical Paper

Understanding Fuel Stratification Effects on Partially Premixed Compression Ignition (PPCI) Combustion and Emissions Behaviors

2019-04-02
2019-01-1145
Fuel stratification effects on the combustion and emissions behaviors for partially premixed compression ignition (PPCI) combustion of a high reactivity gasoline (research octane number of 80) was investigated using the third generation Gasoline Direct-Injection Compression Ignition (Gen3 GDCI) multi-cylinder engine. The PPCI combustion mode was achieved through a double injection strategy. The extent of in-cylinder fuel stratification was tailored by varying the start of second fuel injection timing (SOIsecond) while the first fuel injection event was held constant and occurred during the intake stroke. Based on the experimental results, three combustion characteristic zones were identified in terms of the SOIsecond - CA50 (crank angle at 50% cumulative heat release) relationship: (I) no response zone (HCCI-like combustion); (II) negative CA50 slope zone: (early PPCI mode); and (III) positive CA50 slope zone (late PPCI mode).
Technical Paper

The Impact of Pre-Chamber Design on Part Load Efficiency and Emissions of a Miller Cycle Light Duty Gasoline Engine

2021-04-06
2021-01-0479
The efficiency and emission potential of pre-chamber combustion in a Miller cycle light duty gasoline engine operated under part load was evaluated. Several pre-chamber designs that examine the engine performance tradeoffs with nozzle diameter, pre-chamber volume, number of nozzles, and pre-chamber fuel enrichment were investigated for both excess air and cooled external EGR dilution strategies. The introduction of pre-chamber jet ignition was observed to significantly reduce the main-chamber combustion duration while reducing cyclic variability under dilute conditions, benefiting from the long-reach ignition jets and enhanced turbulence. However, the pre-chamber design that provided the fastest combustion led to reduced brake efficiency primarily due to increased wall heat loss. Maintaining the total nozzle area while increasing the number of nozzles was identified as a means to minimize the additional heat loss and maintain fast burn rates.
Technical Paper

System-level 1-D Analysis to Investigate Variable Valve Actuation Benefits in a Heavy-Duty Gasoline Compression Ignition Engine

2020-04-14
2020-01-1130
In recent years gasoline compression ignition (GCI) has been shown to offer an attractive combination of low criteria pollutants and high efficiency. However, enabling GCI across the full engine load map poses several challenges. At high load, the promotion of partial premixing of air and fuel is challenging due to the diminished ignition-delay characteristics at high temperatures, while under low load operations, maintaining combustion robustness is problematic due to the low reactivity of gasoline. Variable valve actuation (VVA) offers a means of addressing these challenges by providing flexibility in effective compression ratio. In this paper, the effects of VVA were studied at high loads in a prototype heavy-duty GCI engine using a gasoline research octane number (RON) 93 at a geometric compression ratio (CR) of 15.7. Both late intake valve closing (LIVC) and early intake valve closing (EIVC) strategies were analyzed as a measure to reduce the effective compression ratio.
Technical Paper

System Level 1-D Analysis of an Air-System for a Heavy-Duty Gasoline Compression Ignition Engine

2019-04-02
2019-01-0240
A detailed study of various air system configurations has been conducted for a prototype gasoline compression ignition (GCI) engine using a Cummins MY2013 ISX15 heavy-duty diesel engine as the base platform. The study evaluated the configurations with the assumption that RON80 gasoline would be used as the fuel and the combustion chamber would have a geometric compression ratio (CR) of 16.5. Using 3-D computational fluid dynamics (CFD) simulations, a high efficiency & low engine-out NOx GCI combustion recipe was developed across the five engine operating points from the heavy-duty Supplemental Emissions Test (SET) cycle: A100, B25, B50, B75, and C100. The CFD generated air-thermal boundary conditions and the combustion burn-rate & injector rate-of-injection profiles were imported into a calibrated 1-D engine model for the air-handling systems analysis.
Technical Paper

Simulation-Guided Air System Design for a Low Reactivity Gasoline-Like Fuel under Partially-Premixed Combustion in a Heavy-Duty Diesel Engine

2017-03-28
2017-01-0751
In this study a detailed 1-D engine system model coupled with 3-D computational fluid dynamics (CFD) analysis was used to investigate the air system design requirements for a heavy duty diesel engine operating with low reactivity gasoline-like fuel (RON70) under partially premixed combustion (PPC) conditions. The production engine used as the baseline has a geometric compression ratio (CR) of 17.3 and the air system hardware consists of a 1-stage variable geometry turbine (VGT) with a high pressure exhaust gas recirculation (HP-EGR) loop. The analysis was conducted at six engine operating points selected from the heavy-duty supplemental emissions test (SET) cycle, i.e., A75, A100, B25, B50, B75, and C100. The engine-out NOx target was set at 1 g/hp-hr (1.34 g/kWh) to address a future hypothetical tailpipe NOx limit of 0.02 g/hp-hr (0.027 g/kWh) while an engine-out particulate matter (PM) target of 0.01 g/hp-hr (0.013 g/kWh) was selected to comply with existing EPA 2010 regulations.
Technical Paper

Reduced Gasoline Surrogate (Toluene/n-Heptane/iso-Octane) Chemical Kinetic Model for Compression Ignition Simulations

2018-04-03
2018-01-0191
Toluene primary reference fuel (TPRF) (mixture of toluene, iso-octane and heptane) is a suitable surrogate to represent a wide spectrum of real fuels with varying octane sensitivity. Investigating different surrogates in engine simulations is a prerequisite to identify the best matching mixture. However, running 3D engine simulations using detailed models is currently impossible and reduction of detailed models is essential. This work presents an AramcoMech reduced kinetic model developed at King Abdullah University of Science and Technology (KAUST) for simulating complex TPRF surrogate blends. A semi-decoupling approach was used together with species and reaction lumping to obtain a reduced kinetic model. The model was widely validated against experimental data including shock tube ignition delay times and premixed laminar flame speeds. Finally, the model was utilized to simulate the combustion of a low reactivity gasoline fuel under partially premixed combustion conditions.
Technical Paper

Powertrain Choices for Emerging Engine Technologies

2020-04-14
2020-01-0440
The peak efficiency of modern spark ignited engines varies from 36% to 40% depending on the exact technology utilized. Most engines can achieve this peak efficiency for a limited operating region. Multi-speed transmissions allow the engine to operate closer to its most efficient operating regions for more significant portions of operation. In the case of hybrid powertrains, electric machines help in improving engine efficiency by adjusting operating speed and load. Engine shutdown during idle events and low loads is another avenue for improving the overall efficiency. The choice of the ideal powertrain and component sizes depends on the engine characteristics, drive cycles and vehicle technical requirements. This study examines what type of powertrains will be suitable for more efficient engines that are likely to be available in the near future. Some of the new technologies achieve higher efficiency with a trade off on power or by accepting a more restrictive operating region.
Technical Paper

Opportunities for Medium and Heavy Duty Vehicle Fuel Economy Improvements through Hybridization

2021-04-06
2021-01-0717
The objective of this study was to evaluate the fuel saving potential of various hybrid powertrain architectures for medium and heavy duty vehicles. The relative benefit of each powertrain was analyzed, and the observed fuel savings was explained in terms of operational efficiency gains, regenerative braking benefits from powertrain electrification and differences in vehicle curb weight. Vehicles designed for various purposes, namely urban delivery, utility, transit, refuse, drayage, regional and long haul were included in this work. Fuel consumption was measured in regulatory cycles and various real world representative cycles. A diesel-powered conventional powertrain variant was first developed for each case, based on vehicle technical specifications for each type of truck. Autonomie, a simulation tool developed by Argonne National Laboratory, was used for carrying out the vehicle modeling, sizing and fuel economy evaluation.
Journal Article

Numerical Investigation of a Gasoline-Like Fuel in a Heavy-Duty Compression Ignition Engine Using Global Sensitivity Analysis

2017-03-28
2017-01-0578
Fuels in the gasoline auto-ignition range (Research Octane Number (RON) > 60) have been demonstrated to be effective alternatives to diesel fuel in compression ignition engines. Such fuels allow more time for mixing with oxygen before combustion starts, owing to longer ignition delay. Moreover, by controlling fuel injection timing, it can be ensured that the in-cylinder mixture is “premixed enough” before combustion occurs to prevent soot formation while remaining “sufficiently inhomogeneous” in order to avoid excessive heat release rates. Gasoline compression ignition (GCI) has the potential to offer diesel-like efficiency at a lower cost and can be achieved with fuels such as low-octane straight run gasoline which require significantly less processing in the refinery compared to today’s fuels.
Technical Paper

Numerical Evaluation of Gasoline Compression Ignition at Cold Conditions in a Heavy-Duty Diesel Engine

2020-04-14
2020-01-0778
Achieving robust ignitability for compression ignition of diesel engines at cold conditions is traditionally challenging due to insufficient fuel vaporization, heavy wall impingement, and thick wall films. Gasoline compression ignition (GCI) has shown the potential to offer an enhanced NOx-particulate matter tradeoff with diesel-like fuel efficiency, but it is unknown how the volatility and reactivity of the fuel will affect ignition under very cold conditions. Therefore, it is important to investigate the impact of fuel physical and chemical properties on ignition under pressures and temperatures relevant to practical engine operating conditions during cold weather. In this paper, 0-D and 3-D computational fluid dynamics (CFD) simulations of GCI combustion at cold conditions were performed.
Technical Paper

Mixing-Controlled Combustion of Conventional and Higher Reactivity Gasolines in a Multi-Cylinder Heavy-Duty Compression Ignition Engine

2017-03-28
2017-01-0696
This research investigates the combustion characteristics and engine performance of a conventional non-ethanol gasoline with a research octane number of 91(RON 91) and a higher reactivity RON80 gasoline under mixing-controlled combustion. The work was conducted in a model year 2013 Cummins ISX15 heavy-duty diesel engine. A split fuel injection strategy was developed to address the long ignition delay and high maximum pressure rise rate for the two gasoline fuels. Using the split fuel injection strategy, steady-state NOx sweeps were conducted at 1375 rpm with a load sweep from 5 to 15 bar BMEP. At 5 and 10 bar BMEP, both gasolines consistently exhibited lower soot levels than ULSD with the reduction more pronounced at 5 bar BMEP. 3-D CFD combustion simulation suggested that the higher volatility and lower viscosity of gasoline fuels can help improve the in-cylinder air utilization and therefore reduce the presence of fuel-rich regions in the combustion chamber.
Technical Paper

Lubricity of Light-End Fuels with Commercial Diesel Lubricity Additives

2017-03-28
2017-01-0871
Lubricity is an empirically-determined tribological property, which is a function of the fluid properties and system, and which is known to influence fuel system wear durability. In this work, the lubricity of various fuels was tested using a modified version of ASTM D6079, which uses a high frequency reciprocating rig (HFRR). The fuels were tested as received and with various amounts of commercial diesel lubricity additives. Lubricity of all light-end fuels test as received (without lubricity additives) was found to be substantially worse than additized diesel certification fuel, and lowest for unadditized straight-run gasoline. All diesel lubricity additives tested were able to substantially improve the lubricity of the light-end fuel formulations. The best additives reduced the wear scar diameter in the HFRR test to around 200 μm at a concentration of 200 mg/kg, putting them well within the maximum allowable limit for market No. 2 diesel fuel.
Technical Paper

Fuel and Engine Effects on Rich-Combustion Products as an Enabler of In-Cylinder Reforming

2019-04-02
2019-01-1144
Onboard reforming has been proposed as a strategy for improving spark-ignited (SI) engine efficiency through knock reduction, dilution limit extension, improved thermodynamic gas properties, and thermochemical exhaust enthalpy recuperation. One approach to onboard fuel reforming is to combust fuel in the engine cylinder under rich conditions, producing a hydrogen-rich reformate gas--which can subsequently be recirculated into the engine. Hydrogen is the preferred product in this process due to its high flame speed and knock resistance, compared with other reformate constituents. In this work, the effects of engine operation, fuel composition and water injection were evaluated for their effect on reformate gas composition produced under rich combustion conditions. Engine parameters, including intake pressure, intake temperature, combustion phasing, and valve timing all had no significant impact on hydrogen yield at a given equivalence ratio.
Journal Article

Fuel Effects on the Propensity to Establish Propagating Flames at SPI-Relevant Engine Conditions

2021-04-06
2021-01-0488
In order to further understand the sequence of events leading to stochastic preignition in a spark-ignition engine, a methodology previously developed by the authors was used to evaluate the propensity of a wide range of fuels to establishing propagating flames under conditions representative of those at which stochastic preignition (SPI) occurs. The fuel matrix included single component hydrocarbons, binary mixtures, and real fuel blends. The propensity of each fuel to establish a flame was correlated to multiple fuel properties and shown to exhibit consistent blending behaviors. No single parameter strongly predicted a fuel’s propensity to establish a flame, while multiple reactivity-based parameters exhibited moderate correlation. A two-stage model of the flame establishment process was developed to interpret and explain these results.
Journal Article

Fuel & Lubricant Effects on Stochastic Preignition

2019-01-15
2019-01-0038
In this multi-phase study, fuel and lubricant effects on stochastic preignition (SPI) were examined. First, the behavior of fuels for which SPI data had previously been collected were characterized in terms of their combustion and emissions behavior, and correlations between these characteristics and their SPI behavior were examined. Second, new SPI data was collected for a matrix of fuels that was constructed to test and confirm hypotheses that resulted from interpretation of the earlier data in the study and from data in open literature. Specifically, the extent to which the presence of heavy components in the fuel affected SPI propensity, and the extent to which flame initiation propensity affected SPI propensity, were examined. Finally, the interaction of fuels with lubricants expected to exhibit a range of SPI propensities was examined.
Technical Paper

Fast Gas Analyzer Observations of Stochastic Preignition Events

2019-04-02
2019-01-0254
The goal of this study was to generate exhaust fast gas data that could be used to identify phenomena that occur before, during, and after stochastic preignition (SPI), also called low-speed preignition (LSPI), events. Crank angle resolved measurement of exhaust hydrocarbons, NO, CO, and CO2 was performed under engine conditions prone to these events. Fuels and engine operating strategies were varied in an attempt to understand similarities and differences in SPI-related behavior that may occur between them. Several different uncommon (typically occurring in less than 1% of engine cycles) features of the fast gas data were identified, and the correlations between them and SPI events were explored. Although the thresholds used to define and identify these observations were arbitrary, they provided a practical means of identifying behavior in the fast gas data and correlating it to SPI occurrence.
Technical Paper

Evolution of Light-Duty Gasoline Compression Ignition (LD-GCI) for High Efficiency and US Tier3- Bin30 Emissions

2024-04-09
2024-01-2092
It is widely recognized that internal combustion engines (ICE) are needed for transport worldwide for years to come, however, demands on ICE fuel efficiency, emissions, cost, and performance are extremely challenging. Gasoline compression ignition (GCI) is one approach to achieve demanding efficiency and emissions targets. At Aramco Research Center-Detroit, an advanced, multi-cylinder GCI engine was designed and built using the latest combustion system, engine controls, and lean aftertreatment. The combustion system uses Aramco’s PPCI-diffusion process for ultra-low NOx and smoke. A P2 48V mild hybrid system was integrated on the engine for braking energy recovery and improved cold starts. For robust low-load operation, a 2-step valvetrain system was used for exhaust rebreathing. Test data showed that part-load fuel consumption was reduced 7 to 10 percent relative to a competitive 2.0L European diesel engine.
Journal Article

Evaluation of Shot-to-Shot In-Nozzle Flow Variations in a Heavy-Duty Diesel Injector Using Real Nozzle Geometry

2018-04-03
2018-01-0303
Cyclic variability in internal combustion engines (ICEs) arises from multiple concurrent sources, many of which remain to be fully understood and controlled. This variability can, in turn, affect the behavior of the engine resulting in undesirable deviations from the expected operating conditions and performance. Shot-to-shot variation during the fuel injection process is strongly suspected of being a source of cyclic variability. This study focuses on the shot-to-shot variability of injector needle motion and its influence on the internal nozzle flow behavior using diesel fuel. High-speed x-ray imaging techniques have been used to extract high-resolution injector geometry images of the sac, orifices, and needle tip that allowed the true dynamics of the needle motion to emerge. These measurements showed high repeatability in the needle lift profile across multiple injection events, while the needle radial displacement was characterized by a much higher degree of randomness.
Technical Paper

Evaluation of Fast Warm-Up Strategies for a Light-Duty Gasoline Compression Ignition (GCI) Engine

2020-04-14
2020-01-0317
Increasingly stringent emissions regulations in automotive applications are driving advancements in after-treatment technology and emissions control strategies. Fast warm-up of the after-treatment system during the engine cold-start is essential to meet future emissions targets. In this study, a range of strategies were evaluated on a 2.2L, four cylinder, light-duty Gasoline Compression Ignition (GCI) engine with geometric compression ratio 17. The GCI engine has a single stage turbocharger and low-pressure exhaust gas recirculation (EGR) with EGR cooler bypass. For cold-start assist, the engine is equipped with a 2.5kW electric intake air heater. The aftertreatment system is comprised of an oxidation catalyst, followed by a particulate filter and an SCR catalyst. A GT-Power model of a light-duty diesel engine was modified to represent the GCI engine system setup for catalyst light-off strategies evaluations.
X