Refine Your Search

Topic

Author

Search Results

Technical Paper

Vehicle Handling Sensitivity Analysis through Numerical Simulation in Commercial Vehicles

2015-09-29
2015-01-2736
Vehicle handling is an important attribute that is directly related to vehicle safety. The rapid development of road infrastructure has resulted in a greater focus on safety and stability. Commercial vehicle stability and safety assumes higher significance because of high center of gravity (CG) and heavier loads. A gamut of parameters influence vehicle handling directly and indirectly. However, it is quite difficult to gauge through physical testing, the extent of each parameter's influence on handling. Therefore, this paper examines vehicle handling by way of a sensitivity analysis through numerical simulation. A prototype vehicle is also instrumented and tested to confirm trends and validate the results of the simulation. An Intermediate Commercial Vehicle (ICV) with Gross Vehicle Weight (GVW) of around 13 tonnes is modeled and parameters like wheelbase and tyre stiffness are altered and the effect of these changes on handling parameters (yaw rate, lateral acceleration) is observed.
Technical Paper

Study on the Effect of Allied Components in the Life of a Parabolic Spring in Passenger Vehicle Application

2017-01-10
2017-26-0313
In today competitive world, gaining customer delight is the most vital part of an automotive business. Customers’ expectations are high which need to be satisfied limitless, to stay in the business. The major expectation of a commercial vehicle customer is a vehicle without failures which involves lower spares cost and downtime. The significance of a suspension system in the new age automobiles is getting advanced. There have been many improvements in the suspension system especially in leaf springs to provide a better ride comfort, and one such modern era implementation is the Parabolic Spring which comprises of fewer leaves with varying thickness from the center to the ends without inter-leaf friction. Study reveals that parabolic spring exhibits better ride comfort, but less life compared to a conventional leaf spring which leads to the increase in downtime of the vehicle.
Technical Paper

Study and Comparison of Road Profile for Representative Patch Extraction and Duty Cycle Generation in Durability Analysis

2017-01-10
2017-26-0309
Automotive vehicles are subjected to a variety of loads caused by road undulations. The load history data measured from the roads are one of the vital input parameters for physical test as well as virtual durability simulation of vehicles. In general, the automotive vehicles are instrumented and subjected to a variety of driving conditions in diverse roads to obtain representative road load time histories. Acquired road load time history signals from various roads are exhaustive and repetitive in terms of both time length and data size. This results in more computation and virtual simulation processing. Hence it is imperative to reduce the input time signals without compromising on the representation of the actual operating conditions. Signal reduction of measured road load histories for virtual simulation assumes greater significance for durability prediction.
Technical Paper

Steering Column Slip Endurance Test & Rig Development

2018-04-03
2018-01-0125
In the emerging commercial vehicle sector, it is very essential to give a product to customer, which is very reliable and less prone to the failures to make the product successful in the market. In order to make it possible, the product is to be validated to replicate the exact field conditions, where it is going to be operated. Lab testing plays a vital role in reproducing the field conditions in order to reduce the lead time in overall product life cycle development process. This paper deals with the design and fabrication of the steering column slip endurance test rig. This rig is capable of generating wear on the steering column splines coating which predominantly leads to failure of steering column. The data acquired from Proving Ground (PG) was analyzed and block cycles were generated with help of data analyzing tools.
Technical Paper

Seat Suspension Based on Variable Absorber System Stiffness for Enhanced Ride Comfort

2006-10-31
2006-01-3480
One of the important methods by which vibrations of a body are reduced is by the use of vibration absorbers or tuned absorbers. This technique involves attaching a spring mass system, called absorber system, to the vibrating body (also called primary body). This paper is a case study dealing with a primary system, here a driver seat, to attenuate its response to disturbance. It has high damped natural frequency compared to the base excitation frequency, which was collected from test data. The paper discusses the variations in absorber and primary system damping ratio, mass ratio variation and usage of variable stiffness. Detailed analysis showed instability in the tuned system due to the large gap between the primary body's damped natural frequency, and the target base excitation frequency. In order to address varying target excitation frequency, an adaptive tuned absorber is suggested.
Technical Paper

Resolution of Engine Oil Mixing with Power Steering Oil in Steering Pump by Behavioral Study

2015-09-29
2015-01-2720
Steering gear box function is one of the important requirements in heavy vehicles in order to reduce driver fatigue. Improper functioning of steering gear box not only increases the driver fatigue, also concerns the safety of the vehicle. In this present investigation, the engine oil mixing up with steering oil has been identified and steering gear box failure has been observed in the customer vehicle. The root cause of failure has been analyzed. Based on the investigations, in particular design of steering pump has been failed at customer end. The same design of steering pump were segregated and analyzed. Initial pressure mapping study has been conducted. The pressure mapping results revealed that the cavity pressure obstructs the flow of suction pressure. It indicates that obstacle at suction port due to the existence of internal leakage that causes back pressure in the internal cavity of steering pump which sucks engine oil.
Technical Paper

Real Road Transient Driving Cycle Simulations in Engine TestBed for Fuel Economy Prediction

2014-10-13
2014-01-2716
The present work describes an approach to predict the vehicle fuel economy by simulating its engine drive cycle on a transient engine dynamometer in an engine testbed. The driving cycles investigated in the current study were generated from the typical experimental data measured on different vehicles ranging from Intermediate Commercial Vehicle (ICV) to Heavy-duty Commercial Vehicle (HCV) in real-world traffic conditions include various cities, highways and village roads in India. Reliability and robustness of the method was studied on various engines with cubic capacity from 3.8 liters to 8 liters using different drive cycles, and the results were discussed. Later, using same measured drive cycles, vehicle fuel economy was predicted by a vehicle simulation tool (AVL CRUISE) and results were compared with experimental data. In addition, engine coolant temperature effect on fuel economy was investigated.
Technical Paper

Powertrain Cradle Verification and Validation for Bus Application Export Market

2018-04-03
2018-01-1379
To capture market share in different regions of the world, the product must fit different road profiles and operating conditions. Designing a product which suits two different markets requires many factors to be considered like the topography, driving pattern and road load profiles. This project deals with once such situations and required a stringent validation protocol which shall encompass all possible driving scenarios. The fully built vehicle is to be exported to a different market and required powertrain change and subsequently required a new cradle design. Customer usage and road profile study was carried out in the new market to estimate the percent operation in each zone i.e. good road and bad road. CAE analysis carried out to capture stress hotspots and possible failure locations. Vehicle is taken to road to measure frame acceleration at different speeds i.e. 40 kmph to 100 kmph.
Technical Paper

Passenger Vehicle Saloon Noise Prediction Using Acoustic Transfer Function Measurement Based Model

2017-06-05
2017-01-1862
New legislation’s, competition from global players and change in customer perception related to comfort parameters are key factors demanding manufactures to design and manufacture vehicles with very low saloon noise levels. The main causes for higher noise levels at passenger saloon compartment can be attributed to source noises (Powertrain, Driveline, Intake and Exhaust etc.), acoustic isolation and structural sensitivity of the body. Out of all above parameters, powertrain noise and acoustic isolation are two critical parameters effecting interior noise performance. This paper is an attempt to explain acoustic source contribution analysis through transfer function measurement in a passenger vehicle. Acoustic transfer function between engine bay and passenger ear level was measured using reciprocity technique (reciprocal method) with reference source placed at various locations inside the vehicle.
Technical Paper

Pass by Noise Reduction on an Intermediate Commercial Vehicle

2018-06-13
2018-01-1535
A major activity of any new vehicle development program, is to meet legal requirements of local markets. Pass by noise (PBN) test is one of the standardized tests and is used to certify new vehicles/variants for their Noise emissions. Certification for noise emissions of commercial vehicles is achieved by measuring external sound levels according to procedures defined by standards such as IS: 3028 for Indian market. Before a physical proto-vehicle is assembled, various systems and subsystems are readily made available by suppliers off the shelf. During final design validation of the vehicle by mule-vehicle testing, PBN target compliance need be assured for all these systems in order to meet overall PBN target. The PBN on an Intermediate commercial vehicle (ICV) migrated to the latest Exhaust emission standard, was the subject of this study. This vehicle emitted PBN greater than accepted threshold.
Technical Paper

Operational Deflection Shapes & Resonance Analysis Using Road Simulator

2019-01-09
2019-26-0323
In today’s competitive world to stay in the commercial vehicle business, technological advancement is vital. Understanding the various operation modes of a vehicle considering the vibration becomes essential for developing a vehicle free from failures. ODS analysis is a method which is used to visualise the vibration pattern of a vehicle when influenced by known external operating forces. ODS provide very useful information for understanding and evaluating the behavior of the vehicle. This paper discusses about the experiments carried out in vehicle. It details the process of data collection at varying frequency input, understanding the modes at various frequencies, identifying the resonant frequency of various components, understanding the comparison between road inputs and resonance frequencies and the transfer of vibration (Transmissibility) from one component to another.
Technical Paper

Numerical Simulation and Experimental Validation of an Engine Oil Sump for Improved Noise Characteristics

2017-06-05
2017-01-1801
Powertrain is the major source of noise and vibration in commercial vehicles and has significant contribution on both interior and exterior noise levels. It is vital to reduce the radiated noise from powertrain to meet customer expectations of vehicle comfort and to abide by the legislative noise requirements. Sound intensity mapping technique can identify the critical components of noise radiation from the powertrain. Sound intensity mapping has revealed that oil sump as one of the major contributors for radiated noise from powertrain. Accounting the effect of dynamic coupling of oil on the sump is crucial in predicting its noise radiation performance. Through numerical methods, some amount of work done in predicting the dynamic characteristics of structures filled with fluid. This paper discusses on the capability of numerical approach in predicting the oil sump modal characteristics with fluid-structure interaction and consequent verification with experimental modal test results.
Technical Paper

Noise Source Identification and Exterior Noise Reduction of a Commercial Vehicle

2017-07-10
2017-28-1936
Exterior noise reduction of a vehicle has become important nowadays in order to meet the stringent pass by noise regulations. First step in this process is the identification of dominant noise sources. There are several noise sources which can contribute to the pass by noise like gearbox, turbocharger, oil sump, exhaust muffler, air intake etc. The dominant noise sources can be identified with the near field noise, component vibration measurements combined with experimental modal analysis. This paper discusses about the noise source identification and exterior noise reduction of a shortest wheel base intermediate commercial vehicle, which is having a 4-cylinder inline diesel engine.
Technical Paper

Noise Reduction at Source for a Vehicle Using Free Layer Damper

2011-01-19
2011-26-0067
Traditional methods of noise control in most application are by using absorption and barrier techniques. These involve brackets & clamps for assembly, carrier material to hold absorbing materials. Usage of absorbing materials which could be high, as this is based on noise control technique by allowing source to produce noise and hence the cost is also higher. Based on the survey, several demerits have been studied in using absorption and barrier noise control techniques in the field of an automobile application. This paper deals with the noise control by using the application of free layer damping technique thereby overcoming the demerits happening in using former techniques, helping better control of noise in the environment and solutions which are more durable. The methodology followed here before going for the FLD application is identification of noise radiating components which needs to be damped in a system or subsystem.
Technical Paper

NVH Investigation and Refinement of Auxiliary Gearbox in a 4×4 Heavy Commercial Vehicle

2013-11-27
2013-01-2850
The present work focusses on the Noise &Vibration refinement carried out on a Heavy commercial vehicle (HCV). In a heavy commercial 4×4 vehicle the existence of an auxiliary gearbox (AGB) is primarily for switching between the multiple drive options. The AGB can become an additional source of noise from the drive train. In this particular vehicle the overall noise from the vehicle has particularly been dominated by the noise from the AGB in specific drive options and conditions as experienced during the subjective assessment of the vehicle initially. First assessment was made by modifying the gear tooth geometry and then the gears were changed from spur to helical as a part of the AGB refinement process. The results of both these assessments were compared. A considerable improvement in the AGB noise was thereby achieved.
Technical Paper

NVH Attribute - Roadmap for Competitive Advantage

2013-11-27
2013-01-2851
In the automotive industry several attributes needs to be considered for the development of a new vehicle which are important for the customer, such as vehicle dynamics, driveability, fuel consumption, emissions, durability and NVH among many others. Sometimes these characteristics are conflicting and often need is to create a robust trade-off where the design space is sufficient to fit all of them in a vehicle that rhymes with the brand image and is appealing to the intended customer. Automobile manufacturers try to meet the requirements with respect to quality and comfort and often, emotional, aspects supercede the previous objective, pragmatic demands. The satisfaction of the demands by the customers concerning comfort, driving pleasure, design appears dominant and functionality criteria sometimes takes a back seat. NVH is considered to be one of the key buy in factor among the above mentioned attributes.
Technical Paper

Modal Model Correlation of Commercial Vehicle Frame

2019-01-09
2019-26-0212
Design decisions based on the virtual simulations leads to reduced number of prototype testing. Demonstrated correlation between the computer simulations and experimental test results is vital for designers to confidently take simulation driven design decisions. For the virtual design evaluation of durability, ride, handling and NVH performance, demonstration of correlation of structural dynamic characteristics is critical. Modal correlation between CAE and physical testing validates the stiffness and mass distribution used in the FE model by correlating mode shape and mode frequency in the desired frequency range. The objective of this study is to arrive at a method for establishing modal correlation between CAE and experimental test for a bare frame and thereby enabling evaluation of design iterations in virtual environment to achieve modal targets.
Technical Paper

Methodology Development for Torsional Vibration Measurement and Processing in Powertrains

2015-06-15
2015-01-2278
Torsional vibration is a characteristic phenomenon of automotive powertrains. It can have an adverse impact on powertrain related noise as well as the durability of transmission and drivetrain components. Hence minimizing torsional vibration levels associated with powertrains has become important. In this context, accurate measurement and representation of angular acceleration is of paramount importance. A methodology was developed for in-house vehicle level torsional vibration measurement, analysis and representation of results. The evaluation of torsional vibration has two major aspects. First, the acquisition of raw rotational data and secondly, the processing of acquired data to arrive at usable information from which inferences and interpretations can be made about the behavior of the rotating element. This paper describes the development process followed for establishing a torsional vibration evaluation methodology.
Technical Paper

Interior Noise Refinement in an ICV Bus through Driveline Torsional Vibration Analysis

2018-06-13
2018-01-1472
With a push for urbanization across cities, there is an increased demand for mobility in public transportation especially buses which are provided through state transport undertakings. Hence, the expectations of this class of vehicles will be high in terms of quality and comfort to the passengers. The noise inside the passenger area of the bus becomes an important parameter, which sets apart a bus manufacturer from its competitors. The driveline of the bus is the system responsible for the transfer of power from engine to the wheels. The noise and vibration problems associated with it are detected only in the late stages of the design chain, when all its elements are tested together over a wide range of conditions. Since, calibration of engine and the selection of transmission is freezed in early stages, satisfying power and torque requirements, the only viable option left to address the problem is by optimizing the clutch parameters.
Technical Paper

In-Cylinder Combustion Control Strategy to Meet Off-Road Emission Norms with Conventional Mechanical Fuel Injection System

2014-10-13
2014-01-2648
Off-road BS III CEV (US-TIER III equivalent) emission regulations for diesel engines (i.e. Construction Equipment Vehicles) in India demands a technology upgrade to achieve a large reduction in NOx (>50%) and Particulate Matter (>50%) compared to BS II CEV emission levels. EGR is a widely accepted technology for NOx reduction in off-road engines due to lower initial and operating costs. But EGR has its own inherent deficiency of poor thermal efficiency due to lack of oxygen and further increase in soot adding complexity of meeting PM Emissions. Hence an engine meeting BS III CEV norms without EGR/SCR technologies with low initial investment is most desired solution for Indian off-road segment. This work deals with the development of an off-road diesel engine rating from 56 to 74 kW, focused mainly on in-cylinder optimization with the aid of optimum injection and charging strategies.
X