Refine Your Search

Topic

Author

Search Results

Technical Paper

Virtual Engine Optimization from Design to Experimentation

2017-01-10
2017-26-0264
Virtual modeling of engine and predicting the performance and emissions is now becoming an essential step in engine development for off-road application due to the flexibility in tuning of the combustion parameters and requirement of shorter development times. This paper presents an approach where the test bed calibration time is reduced using virtual techniques, such as 1D thermodynamic simulation and 3D CFD combustion simulation for 4 cylinders TCIC engine complying with Stage IIIA emission norms. 1D thermodynamic simulation has played an important role in the early stage development of an engine for selection of engine sub systems like turbocharger, manifolds, EGR system, valve timings etc. The application of 1D Simulation tool for combustion system development, focusing on NOx emissions for an off road multicylinder mechanical injection diesel engine is discussed.
Technical Paper

Systematic Evaluation of 20% Ethanol Gasoline Blend (E20) as a Potential Alternate Fuel

2017-01-10
2017-26-0072
Utilization of higher ethanol blends, 20% ethanol in gasoline (E20), as an alternate fuel can provide apparent benefits like higher octane number leading to improved anti-knocking properties, higher oxygen content resulting in complete combustion. Apart from technical benefits, use of ethanol blends offer certain widespread socioeconomic benefits including option of renewable source of energy, value addition to agriculture feedstock resulting in increase in farm income, creation of more jobs in rural sector and creating job at local levels. Use of higher blends of ethanol can reduce dependence on foreign crude leading to substantial savings in cost of petroleum import. The impact of higher Gasoline-Ethanol blend (E20), on the fuel system components of gasoline vehicles must be known for assessment of whether the fuel system will be able to perform as intended for the complete design life of the system.
Technical Paper

Synthesis and Characterization of Nickel and Ni-TiO2 Nanocomposite Coatings Processed by Pulse Electro-deposition Technique

2015-01-14
2015-26-0060
Nickel electroplating is commonly used with substrates including steel, aluminum, plastic and zinc die-cast parts because of its high resistance to temperature, corrosion and wear in harsh conditions. To further enhance its tribological and mechanical properties, research works are going on to produce nano-reinforced composites of Ni with various ceramic and rare earth oxides like CeO2, ZrSiO4, SiC, TiO2, etc. The aim of present work is synthesis and characterization of Ni films and Ni based TiO2 nano-composite coating processed by pulse co-electrodeposition technique. Also, to investigate the various properties such as mechanical, wear and corrosion resistance, conductivity & thermal stability of Ni-TiO2 nanocomposites electrodeposited on steel substrate, especially the effects of the amount of nanosized TiO2 particles in Ni-TiO2 nanocomposites.
Journal Article

Study to Compare CO2 Emissions from M1 Bharat Stage VI Passenger Vehicles at Chassis Dynamometer and Indian Real Traffic Conditions

2021-09-22
2021-26-0198
Bharat Stage VI (BS VI) emission norms are already introduced in India from 1st April 2020. The implementation of BS VI emission standards essentially brings Indian motor vehicle regulations on par with most stringent International standards. The BS VI regulation also mandated Real Driving Emission (RDE) measurement with objective to limit regulated pollutants esp. NOX & PN during real use of vehicle. For M1 passenger vehicles Carbon Dioxide (CO2) emissions measured in Lab is also regulated under CAFÉ (Corporate Average Fuel Economy) however, CO2 emission during Real on Road Driving is not regulated. So, this study was carried out to compare CO2 on real road traffic conditions with standard lab conditions. This study was done on a set of BS VI compliant vehicles with diverse characteristic such as engine capacity, fuel type.
Technical Paper

Study of Changes in Exhaust After-Treatment System Components in M & N Category Vehicles from the RDE Monitoring Stage to the RDE Compliance Stage

2024-01-16
2024-26-0150
Bharat Stage VI emission norms were implemented in India in two stages: Stage I from April 1, 2020, and Stage II from April 1, 2023. For M & N category vehicles, the RDE test along with other applicable certification tests is mandatory for obtaining a BSVI compliance certificate during stages I and II. The RDE test is conducted on roads under real driving conditions, unlike the Type-I test, which uses a predefined cycle on the chassis dynamometer, during which the ambient temperature and other environmental conditions are controlled in a narrow range. During BSVI Stage I for the RDE test, there was no limit for any pollutant. Therefore, it is considered as the RDE monitoring stage, and from BS-VI Stage II, limits are enforced on a few pollutants (NOX and PN) as notified in notification GSR 226(E) dated March 27, 2023. Therefore, it is considered the RDE compliance stage.
Technical Paper

Sound Quality Rating of Passenger Car Diesel Powertrains

2017-01-10
2017-26-0189
The parameters such as lower noise levels, quietness, etc. of a vehicle has no longer remained the only driving features since the passenger car buyers are greatly influenced by the perception of the sound. In a scenario like this, the sound quality becomes of great importance especially for smaller diesel powertrains as they are more annoying than their gasoline counterparts. The idling noise is critical as its noise creates the first impression of the vehicle on the buyer. The Indian passenger car market is dominated by diesel cars equipped with smaller engines less than 2 liter capacity. Present work describes the methodology to formulate the equation for annoyance/pleasantness for the diesel powertrains used in Indian passenger cars. The index, Sound Annoyance Rating (SAR) developed through this work is significant for powertrain level target setting and benchmarking purposes.
Technical Paper

Sound Power Assessment, Noise Source Identification and Directivity Analysis of Compaction Machines

2021-09-22
2021-26-0281
NVH has gained importance in the field of earth moving equipment due to the demand of quieter machines and stringent in-cab as well as exterior noise emission norms. Several parts of the world have adopted strict legislation on noise emission by earth moving equipment, but many countries have not adopted any regulations till date. The aim of this study is to help governing bodies as well as machine manufacturers in adopting simple yet accurate testing method for compactor machine. The study consists of directivity analysis, noise source identification, noise source ranking and 4-point microphone position sound power evaluation method applied to compactors with wide range of engine power ratings. All the tests in 4-point method and directivity analysis were performed under stationary as well as dynamic conditions.
Technical Paper

Review on Advanced Low Temperature Combustion Approach for BS VI

2017-01-10
2017-26-0042
With the announcement, as per draft notification GSR 187 (E) dated 19th Feb 2016 issued by MoRTH (Ministry of Road Transport and Highways), on vehicle emission standards to leapfrog from BS IV to BS VI by 2020, diesel engines would be greatly facing challenges to meet the stringent emission requirements of 90% reduction in PM and 50% reduction in NOx emissions simultaneously. Up to BS IV, in-cylinder strategies utilizing higher fuel injection pressure, higher intake boost, lower to moderate EGR, optimized combustion chamber design and lower intake manifold temperature would be sufficient. But meeting emission levels at BS VI levels would require a combination of both in-cylinder combustion control and after treatment system [1]. However, unlike Europe and US markets where wide spread adoption of after treatment solution is viable, for Indian market it would be impeded by infrastructure availability, system cost and cost of ownership.
Technical Paper

Quick Analysis of Elemental Composition of Automotive Materials Using Non-destructive Technique

2023-05-25
2023-28-1327
Energy dispersive X-ray fluorescence (EDXRF) analysis have made it possible to conduct elemental analysis on a variety of fields, including those with environmental, automotive, geological, chemical, pharmaceutical, archaeology, and biological origins. The ability of EDXRF to deliver quick, non-destructive, and multi-elemental analytical findings with increased sensitivity is of great importance. It is a vital tool for quality control and quality assurance applications. Thus, EDXRF plays an important role to compare batch-to-batch products for meeting quality standards. This paper presents application of EDXRF as an effective tool for quick qualitative and quantitative evaluation of given samples.
Technical Paper

Process Modelling of Aluminium Propeller Shaft by Integrated Computational Materials Engineering Approach

2021-09-22
2021-26-0374
An excellent physical and mechanical property makes Aluminium (Al) alloy suitable alternative lightweight materials against steel and cast iron in automotive components. ICME is a computational tool, which integrates the materials information to engineering product performance analysis. MatCalc is ICME tool, which follows the chain rule of process, microstructure, property and performance relationship in materials development. This paper reports the development of Al 6061-T6 propeller shaft through forging process and the materials and process model of the Al yoke is simulated using MatCalc simulation software. Finite element analysis method is used for designing of Al 6061-T6 propeller shaft. The forged Al yoke is solutionized at temperature 550°C for 1 hr followed by artificial ageing at temperature 180°C for 16 hrs to improve the hardness and strength of the yoke.
Technical Paper

Numerical Prediction of NOx in the Exhaust of a CI Engine Fuelled with Biodiesel Using In-Cylinder Combustion Pressure Based Variables

2016-02-01
2016-28-0153
Alternative fuels for both spark ignition (SI) and compression ignition (CI) engines have become very important owing to increased environmental protection concern, the need to reduce dependency on petroleum and even socioeconomic aspects. An appropriate sustainable fuel alternative has turn out to be a main concern and bio-diesel is one of the sustainable fuels. The path of interest in biodiesel has highlighted its advantages which include decrease in hydrocarbon and particulate matter. Meanwhile its shortcoming includes higher emission of oxides of nitrogen. This work is an attempt to develop a mathematical relationship to predict thermal NOx in CI engine fuelled with neat biodiesel. Attention was focused on using in-cylinder pressure based variables to predict NOx. In cylinder pressure measurement is a valuable tool for the analysis of CI engine combustion, which is used for finding the heat release rate, ignition delay, etc.
Technical Paper

Measurement of Mass Emissions from In-Use Two-Stroke Engine Three-Wheelers in South Asia

2002-05-06
2002-01-1681
Two-stroke engine two- and three-wheelers comprise over half of the total vehicle population in South Asia and, as such, are likely to be significant contributors to particulate air pollution in large cities. Because there are no standards for particulate emissions from two-stroke engine gasoline vehicles, there is very little data available quantifying their emission levels. This study examined the procedure for measuring particulate emissions from two-stroke engines which comprise predominantly liquid droplets, and measured mass emissions from in-use three-wheelers to examine the impact of the engine condition, lubricant type and quantity, and fuel quality. The results are compared to smoke emission levels.
Technical Paper

Experimentation for Evaluation of Real Driving Emission Test Routes in India for LDVs

2019-01-09
2019-26-0150
With introduction of Bharat Stage VI (BS VI) norms from 1st April 2020, automotive industry will observe one of most stringent Indian emission regulation implementation in line with International standards. The Bharat Stage VI (BS VI) regulation also mandates for Real Driving Emission (RDE) measurement from 1st April 2020 for data collection and subsequently establishment of RDE compliance Factor (CF) by 1st April 2023. Indian RDE test procedure will be largely based on European RDE with minor changes in terms of climatic conditions, traffic pattern, speed limit, topography, and vehicle population. For performing a successful RDE trial one of the most critical part is selection of a route on which all RDE boundary conditions can be met. This technical paper summarizes the outcome of RDE experiments carried out on Light Duty Vehicles (LDV) in the city of Pune, Mumbai, and Bangalore. The collected data was post processed using CO2 based Moving Average Window (MAW) method.
Technical Paper

Effects of Low Temperature on Forged Steel Materials in Hydrogen Internal Combustion Engines Applications: Assessing Ductile-Brittle Transition

2024-01-16
2024-26-0174
Hydrogen Internal Combustion Engine (H2ICE) has hydrogen gas storage system and is operated at very low temperature before it enters the combustion chamber. The effect of hydrogen on steel materials is detrimental because of hydrogen embrittlement. Forged steel parts are used in engine specifically valve. The goal of the work is to analyze the outcome of low temperature i.e. 35 °C to -30 °C on three types of forged steel materials i.e. 40Cr4, 42CrMo4 and EN8 and assess any potential changes in their properties due to ductile to brittle transition. Charpy impact test is widely used to determine the temperature at which a material shifts from exhibiting ductile behavior to brittle behavior. This transition is critical for understanding the safety and reliability of steel components, as brittle fracture can lead to catastrophic failures.
Technical Paper

Design and Development of Radiator Fan for Automotive Application

2012-04-16
2012-01-0555
A methodology for design and development of radiator cooling fan is developed with an objective to improve underhood thermal management. For this purpose an Axial Fan Design Software has been developed which is based on Arbitrary Vortex Flow theory. The software is useful for obtaining initial blade design for the given basic functional requirements in terms of Airflow, Pressure Rise and Speed which defines the operating point of the fan. CFD analysis of the initial fan design is then carried out to predict the fan performance curve. Computation model resembles a fan set up in a wind tunnel. Further, Parametric Optimization is carried out using CFD to meet the functional requirements. A Rapid Prototype sample of the optimized fan design is manufactured and tested in a fan test rig made as per AMCA 210-99 standard to evaluate the fan performance curve and the power consumption.
Technical Paper

Design and Development of 3- Cylinder: 75 kW/liter, High Power Density Diesel Engine for Passenger Car Application to Meet Euro IV/V Emission Norms

2011-01-19
2011-26-0033
To meet the latest trends in internal combustion engines pertaining efficiency, emissions and durability, downsizing of the engine has become the key focus area. This paper describes about a robust, reliable and an integrated approach used in design and development of state of art high power density/ high speed engine developed from the concept, which can be adopted for passenger car and LCV application. A three-cylinder, 1.5 liter displacement diesel engine, fully balanced is being designed with an objective to produce 115kW @ 4200 rpm, delivering a specific power output over 75 kW/liter, which is at par with a contemporary class of specification in it. In the first stage, a derated version of 75 kW (50 kW/liter) with Euro-IV and Euro-V specifications is targeted aiming at smaller car and light motor vehicle segment and a prime-mover for hybrid application.
Technical Paper

Cost Effective Pathways toward Highly Efficient and Ultra-Clean Compression-Ignition Engines, Part II: Air-Handling and Exhaust Aftertreatment

2024-01-16
2024-26-0044
Currently, on-road transport contributes nearly 12% of India’s total energy related carbon dioxide (CO2) emissions that are expected to be doubled by 2040. Following the global trends of increasingly stringent greenhouse gas emissions (GHG) and criteria emissions, India will likely impose equivalent Bharat Stage (BS) regulations mandating simultaneous reduction in CO2 emissions and nearly 90% lower nitrogen oxides (NOx) from the current BS-VI levels. Consequently, Indian automakers would likely face tremendous challenges in meeting such emission reduction requirements while balancing performance and the total cost of ownership (TCO) trade-offs. Therefore, it is conceivable that cost-effective system improvements for the existing internal combustion engine (ICE) powertrains would be of high strategic importance for the automakers.
Technical Paper

Cost Effective Pathways toward Highly Efficient and Ultra-Clean CI Engines, Part I: Combustion System Optimization

2024-01-16
2024-26-0037
Following global trends of increasingly stringent greenhouse gas (GHG) and criteria pollutant regulations, India will likely introduce within the next decade equivalent Bharat Stage (BS) regulations for Diesel engines requiring simultaneous reduction in CO2 emissions and up to 90% reduction in NOx emission from current BS-VI levels. Consequently, automakers are likely to face tremendous challenges in meeting such emission reduction requirements while maintaining performance and vehicle total cost of ownership (TCO), especially in the Indian market, which has experienced significant tightening of emission regulation during the past decade. Therefore, it is conceivable that cost effective approaches for improving existing diesel engines platforms for future regulations would be of high strategic importance for automakers.
Technical Paper

Computational Material Modelling for Damage Prediction of Advanced High Strength Steel

2023-05-25
2023-28-1309
FEA based simulations are extensively used in automotive industry for improving the product design and reducing the time taken for design and prototyping. FEA based simulations require material data as an input in form of material models. Most commonly used material models for simulation of metallic materials are elastic models and elasto-plastic models, which provide very good correlation till ultimate tensile strength (UTS). For simulation beyond UTS value, elasto-plastic material model has to be used along with material model considering the damage accumulation post UTS. For crash like event in automotive crash, required material models should consider the effect of various stress state conditions (Triaxiality) and strain rate sensitivity of materials along with damage accumulation. In LS Dyna solver, MAT_ADD_EROSION material model (GISSMO) along with MAT_024 is widely used for these applications.
Technical Paper

Chemical Profiling of Exhaust Particulate Matter from Indian In-Service Vehicles

2021-09-22
2021-26-0192
Particulate matter is one of the major pollutant responsible for deteriorating air quality, particularly in urban centers. Information on contributing sources with the share from different sources is a first and one of the important steps in controlling pollution. Diverse sources, anthropogenic as well as natural, like industries, transport, domestic burning, construction, wind-blown dust, road dust contribute to particulate matter pollution. Receptor modeling is a scientific method which is utilized for assessment of the contribution of various sources based on chemical characteristics of particulate matter sources and ambient air particulate matter. Representative data of fractions of various chemical species in the particulate matter from the different sources i.e. source fingerprint is an essential input for the receptor modeling approach.
X