Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Year-Long Evaluation of Trucks and Buses Equipped with Passive Diesel Particulate Filters

2002-03-04
2002-01-0433
A program has been completed to evaluate ultra-low sulfur diesel fuels and passive diesel particulate filters (DPFs) in truck and bus fleets operating in southern California. The fuels, ECD and ECD-1, are produced by ARCO (a BP Company) and have less than 15 ppm sulfur content. Vehicles were retrofitted with two types of catalyzed DPFs, and operated on ultra-low sulfur diesel fuel for over one year. Exhaust emissions, fuel economy and operating cost data were collected for the test vehicles, and compared with baseline control vehicles. Regulated emissions are presented from two rounds of tests. The first round emissions tests were conducted shortly after the vehicles were retrofitted with the DPFs. The second round emissions tests were conducted following approximately one year of operation. Several of the vehicles retrofitted with DPFs accumulated well over 100,000 miles of operation between test rounds.
Technical Paper

The Formation of N2O on the SCR Catalyst in a Heavy Duty US 2010 Emission Control System

2013-09-24
2013-01-2463
A heavy duty US 2010/Euro VI type emission control system typically consists of diesel oxidation catalyst (DOC), catalyzed soot filter (CSF), urea based selective catalytic NOx reduction (SCR) and NH3 slip control catalyst (AMOX - excluded for this study). The advent of the US 2014 Green House Gas (GHG) rules has established a limit for tailpipe N2O emissions for on-road heavy duty Diesel engines, thus creating new challenges for catalyst design and system/engine calibration. In this paper, we discuss the effects of both catalyst system design and engine calibration on the formation of N2O across SCR catalysts. This study consisted of system testing on engine, modeling and component reactor testing. These three tools were used to evaluate how NO2 to NOx ratio and ammonia to NOx ratio (ANR) affect N2O formation. The study showed that all of the reviewed factors affect tailpipe N2O emissions.
Technical Paper

Long-Term Durability of Passive Diesel Particulate Filters on Heavy-Duty Vehicles

2004-03-08
2004-01-0079
A multi-year technology validation program was completed in 2001 to evaluate ultra-low sulfur diesel fuels and passive diesel particle filters (DPF) in several different diesel fleets operating in Southern California. The fuels used throughout the validation program were diesel fuels with less than 15-ppm sulfur content. Trucks and buses were retrofitted with two types of passive DPFs. Two rounds of emissions testing were performed to determine if there was any degradation in the emissions reduction. The results demonstrated robust emissions performance for each of the DPF technologies over a one-year period. Detailed descriptions of the overall program and results have been described in previous SAE publications [2, 3, 4, 5]. In 2002, a third round of emission testing was performed by NREL on a small subset of vehicles in the Ralphs Grocery Truck fleet that demonstrated continued robust emissions performance after two years of operation and over 220,000 miles.
Journal Article

Impact of Biodiesel Impurities on the Performance and Durability of DOC, DPF and SCR Technologies

2011-04-12
2011-01-1136
It is estimated that operating continuously on a B20 fuel containing the current allowable ASTM specification limits for metal impurities in biodiesel could result in a doubling of ash exposure relative to lube-oil-derived ash. The purpose of this study was to determine if a fuel containing metals at the ASTM limits could cause adverse impacts on the performance and durability of diesel emission control systems. An accelerated durability test method was developed to determine the potential impact of these biodiesel impurities. The test program included engine testing with multiple DPF substrate types as well as DOC and SCR catalysts. The results showed no significant degradation in the thermo-mechanical properties of cordierite, aluminum titanate, or silicon carbide DPFs after exposure to 150,000 mile equivalent biodiesel ash and thermal aging. However, exposure of a cordierite DPF to 435,000 mile equivalent aging resulted in a 69% decrease in the thermal shock resistance parameter.
Technical Paper

Emission Control Options and Optimization for BSVI Heavy Duty Diesel Applications

2017-01-10
2017-26-0120
The legislative decision to accelerate the implementation of regulations requiring advanced emissions control in India have accelerated the need to advanced emissions control systems. Particulate filters and NOx abatement technology will be needed to meet the new BSVI standards. Integration of these emission control technologies into engine design poses new challenges to the Indian Heavy Duty Diesel Truck Industry. Each new market that implements advanced emission regulations faces challenges that are unique to the local regulation, the local vehicle design, and the local operating conditions. This paper will review the technology options available for BSVI, their strengths and weaknesses, and potential system designs. Additionally this paper will review how critical design factors such as filter regeneration conditions, duty cycle temperatures, and urea injection can affect the system design and catalyst selection.
Technical Paper

Class 8 Trucks Operating On Ultra-Low Sulfur Diesel With Particulate Filter Systems: A Fleet Start-Up Experience

2000-10-16
2000-01-2821
Previous studies have shown that regenerating particulate filters are very effective at reducing particulate matter emissions from diesel engines. Some particulate filters are passive devices that can be installed in place of the muffler on both new and older model diesel engines. These passive devices could potentially be used to retrofit large numbers of trucks and buses already in service, to substantially reduce particulate matter emissions. Catalyst-type particulate filters must be used with diesel fuels having low sulfur content to avoid poisoning the catalyst. A project has been launched to evaluate a truck fleet retrofitted with two types of passive particulate filter systems and operating on diesel fuel having ultra-low sulfur content. The objective of this project is to evaluate new particulate filter and fuel technology in service, using a fleet of twenty Class 8 grocery store trucks. This paper summarizes the truck fleet start-up experience.
X