Refine Your Search

Topic

Author

Search Results

Technical Paper

The New Toyota 2.4L L4 Turbo Engine with 8AT and 1-Motor Hybrid Electric Powertrains for Midsize Pickup Trucks

2024-04-09
2024-01-2089
Toyota has developed a new 2.4L L4 turbo (2.4L-T) engine with 8AT and 1-motor hybrid electric powertrains for midsize pickup trucks. The aim of these powertrains is to fulfill both strict fuel economy and emission regulations toward “Carbon Neutrality”, while exceeding customer expectations. The new 2.4L L4 turbocharged gasoline engine complies with severe Tier3 Bin30/LEVIII SULEV30 emission regulations for body-on-frame midsize pickup trucks improving both thermal efficiency and maximum torque. This engine is matched with a newly developed 8-speed automatic transmission with wide range and close step gear ratios and extended lock-up range to fulfill three trade-off performances: powerful driving, NVH and fuel economy. In addition, a 1-motor hybrid electric version is developed with a motor generator and disconnect clutch between the engine and transmission.
Technical Paper

Techno-Economic Analysis of Solar Hybrid Vehicles Part 1: Analysis of Solar Hybrid Vehicle Potential Considering Well-to-Wheel GHG Emissions

2016-04-05
2016-01-1287
In recent years, automakers have been developing various types of environmentally friendly vehicles such as hybrid (HV), plug-in hybrid (PHV), electric (EV), and fuel cell (FCV) vehicles to help reduce greenhouse gas (GHG) emissions. However, there are few commercial solar vehicles on the market. One of the reasons why automakers have not focused attention on this area is because the benefits of installing solar modules on vehicles under real conditions are unclear. There are two difficulties in measuring the benefits of installing solar modules on vehicles: (1) vehicles travel under various conditions of sunlight exposure and (2) sunlight exposure conditions differ in each region. To address these problems, an analysis was performed based on an internet survey of 5,000 people and publically available meteorological data from 48 observation stations in Japan.
Technical Paper

Newly Developed Toyota Plug-in Hybrid System and its Vehicle Performance under Real Life Operation

2011-06-09
2011-37-0033
Toyota has been introducing several hybrid vehicles (HV) since 1997 as a countermeasure to the concerns raised by automobile, like CO2 reduction, energy security, and pollutant emission reduction in urban areas. Plug in hybrid Vehicle (PHV) uses electric energy from grid rather than fuel for most short trips and therefore presents a next step forward towards an even more effective solution for these concerns. For longer trips, the PHV works as a conventional hybrid vehicle, providing all the benefits of Toyota full hybrid technology, such as low fuel consumption, user-friendliness and long cruising range. This paper describes a newly developed plug-in hybrid system and its vehicle performance. This system uses a Li-ion battery with high energy density and has an EV-range within usual trip length without sacrificing cabin space.
Technical Paper

New Slip Ring System for Electromagnetic Coupling in HEV Driveline

2016-04-05
2016-01-1222
This paper describes the slip ring system for a new hybrid system using an electromagnetic torque converter or an electromagnetic coupling. The slip ring system, which enables electric power transmission between a winding rotor and an inverter fixed on a case, is a key component for establishing a new highly efficient hybrid system. Reducing the wear of the brushes in the slip ring system is a major topic of this research. To achieve this objective, brush wear characteristics were investigated using test-piece experiments that simulated the hybrid system environment. By clarifying these characteristics, the structure of a slip ring system for reducing brush wear was identified and a wear prediction method was constructed.
Technical Paper

New Method to Achieve High Hydraulic Pressure and Improved Gear Pump Performance in Active Height Control (AHC) System

2019-04-02
2019-01-0854
Vehicle weight reduction is becoming more and more important as increasingly stringent fuel economy regulations are introduced around the world. This development improved the hydraulic gear pump performance of the next-generation Active Height Control (AHC) suspension and achieved significant weight reduction of 5 kg by eliminating the auxiliary pump accumulator. To realize the necessary high-pressure with a high flow rate, the sealing performance of the pump at the tips of the gear teeth is very important. This was achieved by developing “breaking-in” technology that shaves away the aluminum housing using the gear teeth and creates zero clearance between the teeth tips and the housing. To reduce the frictional loss torque of the pump, which was identified as an issue of this technology, it was necessary to completely shave away the initial clearance in the breaking-in process.
Technical Paper

Improvement of PN Filtration Efficiency of Coated GPF – Study of Improvement of PN Filtration Efficiency and Reduction of Pressure Drop

2023-09-29
2023-32-0124
This research aimed to improve the PN filtration efficiency of a catalyst coated gasoline particulate filter (cGPF) to meet the next generation of emissions regulations for internal combustion engines. This paper proposes a concept that improves the PN filtration performance while maintaining low pressure drop by forming a thin PM trap layer on the surface of the cGPF substrate. The design guidelines for the coating particle size and coating amount of the PM trap layer were investigated, and actual manufacturing issues were also identified. The validity of this concept and guidelines was then verified on an actual vehicle.
Technical Paper

IGBT Gate Control Methods to Reduce Electrical Power Losses of Hybrid Vehicles

2016-04-05
2016-01-1224
Reducing the loss of the power control unit (PCU) in a hybrid vehicle (HV) is an important part of improving HV fuel efficiency. Furthermore the loss of power devices (insulated gate bipolar transistors (IGBTs) and diodes) used in the PCU must be reduced since this amounts to approximately 20% of the total electrical loss in an HV. One of the issues for reducing loss is the trade-off relationship with reducing voltage surge. To restrict voltage surge, it is necessary to slow down the switching speed of the IGBT. In contrast, the loss reduction requires the high speed switching. One widely known method to improve this trade-off relationship is to increase the gate voltage in two stages. However, accurate and high-speed operation of the IGBT gate control circuit is difficult to accomplish. This research clarifies a better condition of the two-stage control and designed a circuit that improves this trade-off relationship by increasing the speed of feedback control.
Technical Paper

Highly Decorative, Lightweight Flexible Solar Cells for Automotive Applications

2019-04-02
2019-01-0863
The strict CO2 emission limit for passenger cars have been set by US, EU, Japan, China and other countries. In order to meet the requirement, it is essential to develop an alternative power source for the future cars. Power generation by solar panels is a promising renewable energy candidate because the most environmentally friendly vehicles such as electric vehicles and plug-in hybrid vehicles are equipped with large-capacity batteries that can be charged with electricity generated by solar panels. The requirements for the solar panels are paintable with desired color and to be lightweight. In this study, we developed a simple lift-off process for producing colorful and lightweight Cu(In,Ga)Se2 (CIGS) solar cells for future automotive application. Our measurements show that the developed lift-off process can provide the lightweight solar panel that have nearly identical performance compared to that of the cell before the lift-off process.
Technical Paper

Hexagonal Cell Ceramic Substrates for Lower Emission and Backpressure

2008-04-14
2008-01-0805
Stringent emission regulations call for advanced catalyst substrates with thinner walls and higher cell density. However, substrates with higher cell density increase backpressure, thinner cell wall substrates have lower mechanical characteristics. Therefore we will focus on cell configurations that will show a positive effect on backpressure and emission performance. We found that hexagonal cells have a greater effect on emission and backpressure performance versus square or round cell configurations. This paper will describe in detail the advantage of hexagonal cell configuration versus round or square configurations with respect to the following features: 1 High Oxygen Storage Capacity (OSC) performance due to uniformity of the catalyst coating layer 2 Low backpressure due to the large hydraulic diameter of the catalyst cell 3 Quick light off characteristics due to efficient heat transfer and low thermal mass
Technical Paper

HC Adsorber System for SULEVs of Large Volume Displacement

2007-04-16
2007-01-0929
A new HC adsorber system was developed to achieve California SULEV emission standards for a V8 5.0-liter engine application (i.e. LS600hL). A HC adsorber system was first released on 2001 PZEV Prius (1.5-liter engine) in U.S.A. For the 5.0L application the substrate volume of both catalyst and adsorber had to be enlarged for a large volume displacement. Prius-type adsorber system could not be adopted for LS600hL because of the problems of installation. So, a new constructional adsorber was proposed. However the increase of gas flow into the adsorber substrate was a problem for desorption. The gas flow into the adsorber substrate was found to be controllable by the specification adjustment of the “throat” and “retainer” parts of adsorber system. Thus the rapid desorption was successfully reduced, and the HC adsorber system achieved a 50% reduction of HC emission.
Technical Paper

Future Automotive Powertrain – Does Hybridization Enable ICE Vehicles to Strive Towards Sustainable Development?

2004-10-18
2004-21-0082
There exist many environmental and earth resources problems to be solved for the 21st century. Internal combustion engine / electric motor hybrid and fuel cell hybrid vehicles are promising next generation vehicles. This paper describes the current status of the electric power train of ICE hybrids. Based on the mutual features of both ICE and fuel cell hybrid vehicles, this paper also addresses the future opportunities to strive towards sustainable development in future automobiles. We also examine some test cycle to in-use efficiency issues.
Technical Paper

Fuel Property Requirement for Advanced Technology Engines

2000-06-19
2000-01-2019
The effects of gasoline fuel properties on exhaust emissions were investigated. Port injection LEVs, a ULEV, a prototype SULEV which were equipped with three–way (3–way) catalysts and also two vehicles with direct injection spark ignition (DISI) engines equipped with NOx storage reduction (NSR) catalysts were tested. Fuel sulfur showed a large effect on exhaust emissions in all the systems. In the case of the DISI engine with the NSR catalyst, NOx conversion efficiency and also regeneration from sulfur poisoning were dramatically improved by reducing sulfur from 30ppm to 8ppm. Distillation properties also affected the HC emissions significantly. The HC emissions increased in both the LEV and the ULEV with a driveability index (DI) higher than about 1150 (deg.F). The ULEV was more sensitive than the LEV. These results show that fuel properties will be important for future technologies required to meet stringent emission regulations.
Technical Paper

Fuel Effects on SIDI Efficiency and Emissions

2003-10-27
2003-01-3186
Spark ignition direct injection (SIDI) engines have the potential to realize significant thermal efficiency improvements compared to conventional port fuel injection engines. The effects of fuel properties on efficiency and emissions have been investigated in a prototype of an Avensis Wagon equipped with a 2.0 liter, 4 cylinder spark ignition, direct injection (SIDI) engine designed to meet US 2000 emission standards. The vehicle employed a close coupled three-way catalyst and a NOx storage and reduction catalyst. Seven matrix fuels were blended to the same RON with varying levels of aromatics, olefins, ethanol, and volatility. Relative thermal efficiency, fuel economy, and tailpipe emissions were measured for the matrix fuels and a base fuel under the FTP LA4 driving cycle. The engine was operated in a lean burn mode in light load condition for approximately half of the driving cycle.
Technical Paper

Feasibility Study of Exhaust Emissions in a Natural Gas Diesel Dual Fuel (DDF) Engine

2012-09-10
2012-01-1649
The Diesel Dual Fuel (DDF) vehicle is one of the technologies to convert diesel vehicles for natural gas usage. The purpose of this research was to study the possibility of a DDF vehicle to meet emission standards for diesel vehicles. This research was done for small passenger vehicles and commercial vehicles. The exhaust emissions compliance of such vehicles in a New European Driving Cycle (NEDC) mode which was composed of Urban Driving Cycles (UDC) and an Extra Urban Driving Cycle (EUDC) was evaluated. (see APPENDIXFigure A1) In this study, the passenger vehicle engine, compliant with the EURO4 standard, was converted to a DDF engine. Engine bench tests under steady state conditions showed similar result to previous papers. Total hydrocarbon (HC) emission was extremely high, compared to diesel engine. The NEDC mode emissions of the DDF vehicle were estimated based on these engine bench test results.
Technical Paper

Efficient Heat Pump System for PHEV/BEV

2017-03-28
2017-01-0188
As vehicle emission regulations become increasingly rigorous, the automotive industry is accelerating the development of electrified vehicle platforms such as Battery Electric Vehicles (BEV) and Plug-in Hybrid Electric Vehicles (PHEV). Since the available waste heat from these vehicles is limited, additional heat sources such as electric heaters are needed for cabin heating operation. The use of a heat pump system is one of the solutions to improve EV driving range at cold ambient conditions. In this study, an efficient gas-injection heat pump system has been developed, which achieves high cabin heating performance at low ambient temperature and dehumidification operation without the assistance of electric heaters in ’17 model year Prius Prime.
Technical Paper

Effectiveness and Issues of Automotive Electric Power Generating System Using Solar Modules

2016-04-05
2016-01-1266
Solar and other green energy technologies are attracting attention as a means of helping to address global warming caused by CO2 and other emission gases. Countries, factories, and individual homes around the world have already introduced photovoltaic energy power sources, a trend that is likely to increase in the future. Electric vehicles powered from photovoltaic energy systems can help decrease the CO2 emmissions caused by vehicles. Unlike vehicles used for solar car racing, it is not easy to equip conventional vehicles with solar modules because the available area for module installation is very small to maintain cabin space, and the body lines of conventional vehicles are also usually slightly rounded. These factors decrease the performance of photovoltaic energy systems and prevent sufficient electric power generation. This research aimed to estimate the effectiveness of a solar module power generating system equipped on a conventional car, the Toyota Prius PHV.
Technical Paper

Driveability Improvement with Innovative Toyota 8 Speed Automatic Transmission Control

2017-03-28
2017-01-1109
To meet increasing driveability expectation and government stringent fuel economy regulations reducing CO2 emissions of passenger cars; Toyota developed a new 8-speed automatic transmission "Direct Shift-8AT". Direct Shift-8AT is the first stepped automatic transmission model based on “TNGA” philosophy. New models which received Direct Shift-8AT are the new Camry, Highlander and Sienna. Direct Shift-8AT has an innovative control method with gear train and torque converter models, providing enhanced driveability and fuel economy performance through high efficiency transmission technology. This paper describes details of the new technology and vehicle performance.
Journal Article

Development of a New Ceramic Substrate with Gas Flow Control Functionality

2017-03-28
2017-01-0919
Emission regulations in many countries and regions around the world are becoming stricter in reaction to the increasing awareness of environment protections, and it has now become necessary to improve the performance of catalytic converters to achieve these goals. A catalytic converter is composed of a catalytically active material coated onto a ceramic honeycomb-structured substrate. Honeycomb substrates play the role of ensuring intimate contact between the exhaust gas and the catalyst within the substrate’s flow channels. In recent years, high-load test cycles have been introduced which require increased robustness to maintain low emissions during the wide range of load changes. Therefore, it is extremely important to increase the probability of contact between the exhaust gas and catalyst. To achieve this contact, several measures were considered such as increasing active sites or geometrical surface areas by utilizing substrates with higher cell densities or larger volumes.
Technical Paper

Development of Toyota Plug-In Hybrid System

2011-04-12
2011-01-0874
Toyota has been introducing several hybrid vehicles (HV) as a countermeasure to concerns related to the automotive mobility like CO2 reduction, energy security, and emission reduction in urban areas. A next step towards an even more effective solution for these concerns is a plug-in hybrid vehicle (PHV). This vehicle combines the advantages of electric vehicles (EV), which can use clean electric energy, and HV with it's high environmental potential and user-friendliness comparable to conventional vehicles such as a long cruising range. This paper describes a newly developed plug-in hybrid system and its vehicle performance. This system uses a Li-ion battery with high energy density and has an EV-range within usual trip length without sacrificing cabin space. The vehicle achieves a CO2 emission of 59g/km and meets the most stringent emission regulations in the world. The new PHV is a forerunner of the large-scale mass production PHV which will be introduced in two years.
Technical Paper

Development of RC-IGBT with a New Structure That Contributes to Both Reduced Size of Power Control Unit and Low Loss in Hybrid Electric Vehicles

2020-04-14
2020-01-0596
In order to improve the fuel efficiency of Hybrid Electric Vehicles (HEVs), it is necessary to reduce the size and power loss of the HEV Power Control Units (PCUs). The loss of power devices (IGBTs and FWDs) used in a PCU accounts for approximately 20% of electric power loss of an HEV. Therefore, it is important to reduce the power loss while size reduction of the power devices. In order to achieve the newly developed PCU target for compact-size vehicles, the development targets for the power device were to achieve low power loss equivalent to its previous generation while size reduction by 25%. The size reduction was achieved by developing a new RC-IGBT (Reverse Conducting IGBT) with an IGBT and a FWD integration. As for the power loss aggravation, which was a major issue due to this integration, we optimized some important parameters like the IGBT and FWD surface layout and backside FWD pattern.
X