Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Year-Long Evaluation of Trucks and Buses Equipped with Passive Diesel Particulate Filters

2002-03-04
2002-01-0433
A program has been completed to evaluate ultra-low sulfur diesel fuels and passive diesel particulate filters (DPFs) in truck and bus fleets operating in southern California. The fuels, ECD and ECD-1, are produced by ARCO (a BP Company) and have less than 15 ppm sulfur content. Vehicles were retrofitted with two types of catalyzed DPFs, and operated on ultra-low sulfur diesel fuel for over one year. Exhaust emissions, fuel economy and operating cost data were collected for the test vehicles, and compared with baseline control vehicles. Regulated emissions are presented from two rounds of tests. The first round emissions tests were conducted shortly after the vehicles were retrofitted with the DPFs. The second round emissions tests were conducted following approximately one year of operation. Several of the vehicles retrofitted with DPFs accumulated well over 100,000 miles of operation between test rounds.
Technical Paper

Windowed Selected Moving Autocorrelation (WSMA), Tri-Correlation (TriC), and Misfire Detection

2005-04-11
2005-01-0647
In this paper, two correlations, Windowed Selected Moving Autocorrelation (WSMA) and Tri-Correlation (TriC), are introduced and discussed. The WSMA is simpler than the conventional autocorrelation. WSMA uses less data points to obtain useful signal content at desired frequencies. The computational requirement is therefore reduced compared to the conventional autocorrelation. The simplified TriC provides improved signal to noise separation capability than WSMA does while still requiring reduced computational effort compared to the standard autocorrelation. Very often, computation resource limitation exists for real-time applications. Therefore, the WSMA and TriC offer more opportunities for real-time monitor and feedback control applications in the frequency domain due to their high efficiencies. As an example, applications in internal combustion (IC) engine misfire detection are presented. Simulation and vehicle test results are also presented in this paper.
Technical Paper

Vibrational and Sound Radiation Properties of a Double Layered Diesel Engine Gear Cover

1999-05-17
1999-01-1773
The introduction of a thin fluid layer between two layers of sheet metal offers a highly effective and economical alternative to the use of constrained viscoelastic damping layers in sheet metal structures. A diesel engine gear cover, which is constructed of two sheet metal sections spot welded together, takes advantage of fluid layer damping to produce superior vibration and sound radiation performance. In this paper, the bending of a double layered plate coupled through a thin fluid layer is modeled using a traveling wave approach which results in a impedance function that can be used to assess the vibration and sound radiation performance of practical double layered plate structures. Guided by this model, the influence of fluid layer thickness and inside-to-outside sheet thickness is studied.
Technical Paper

Vehicle Powertrain Simulation Accuracy for Various Drive Cycle Frequencies and Upsampling Techniques

2023-04-11
2023-01-0345
As connected and automated vehicle technologies emerge and proliferate, lower frequency vehicle trajectory data is becoming more widely available. In some cases, entire fleets are streaming position, speed, and telemetry at sample rates of less than 10 seconds. This presents opportunities to apply powertrain simulators such as the National Renewable Energy Laboratory’s Future Automotive Systems Technology Simulator to model how advanced powertrain technologies would perform in the real world. However, connected vehicle data tends to be available at lower temporal frequencies than the 1-10 Hz trajectories that have typically been used for powertrain simulation. Higher frequency data, typically used for simulation, is costly to collect and store and therefore is often limited in density and geography. This paper explores the suitability of lower frequency, high availability, connected vehicle data for detailed powertrain simulation.
Technical Paper

Vehicle Engine Aftertreatment System Simulation (VEASS) Model: Application to a Controls Design Strategy for Active Regeneration of a Catalyzed Particulate Filter

2005-04-11
2005-01-0970
Heavy-duty diesel engine particulate matter (PM) emissions must be reduced from 0.1 to 0.01 grams per brake horsepower-hour by 2007 due to EPA regulations [1]. A catalyzed particulate filter (CPF) is used to capture PM in the exhaust stream, but as PM accumulates in the CPF, exhaust flow is restricted resulting in reduced horsepower and increased fuel consumption. PM must therefore be burned off, referred to as CPF regeneration. Unfortunately, nominal exhaust temperatures are not always high enough to cause stable self-regeneration when needed. One promising method for active CPF regeneration is to inject fuel into the exhaust stream upstream of an oxidation catalytic converter (OCC). The chemical energy released during the oxidation of the fuel in the OCC raises the exhaust temperature and allows regeneration.
Technical Paper

Using a DNS Framework to Test a Splashed Mass Sub-Model for Lagrangian Spray Simulations

2018-04-03
2018-01-0297
Numerical modeling of fuel injection in internal combustion engines in a Lagrangian framework requires the use of a spray-wall interaction sub-model to correctly assess the effects associated with spray impingement. The spray impingement dynamics may influence the air-fuel mixing and result in increased hydrocarbon and particulate matter emissions. One component of a spray-wall interaction model is the splashed mass fraction, i.e. the amount of mass that is ejected upon impingement. Many existing models are based on relatively large droplets (mm size), while diesel and gasoline sprays are expected to be of micron size before splashing under high pressure conditions. It is challenging to experimentally distinguish pre- from post-impinged spray droplets, leading to difficulty in model validation.
Technical Paper

US 2010 Emissions Capable Camless Heavy-Duty On-Highway Natural Gas Engine

2007-07-23
2007-01-1930
The goal of this project was to demonstrate a low emissions, high efficiency heavy-duty on-highway natural gas engine. The emissions targets for this project are to demonstrate US 2010 emissions standards on the 13-mode steady state test. To meet this goal, a chemically correct combustion (stoichiometric) natural gas engine with exhaust gas recirculation (EGR) and a three way catalyst (TWC) was developed. In addition, a Sturman Industries, Inc. camless Hydraulic Valve Actuation (HVA) system was used to improve efficiency. A Volvo 11 liter diesel engine was converted to operate as a stoichiometric natural gas engine. Operating a natural gas engine with stoichiometric combustion allows for the effective use of a TWC, which can simultaneously oxidize hydrocarbons and carbon monoxide and reduce NOx. High conversion efficiencies are possible through proper control of air-fuel ratio.
Technical Paper

Total Thermal Management of Battery Electric Vehicles (BEVs)

2018-05-30
2018-37-0026
The key hurdles to achieving wide consumer acceptance of battery electric vehicles (BEVs) are weather-dependent drive range, higher cost, and limited battery life. These translate into a strong need to reduce a significant energy drain and resulting drive range loss due to auxiliary electrical loads the predominant of which is the cabin thermal management load. Studies have shown that thermal sub-system loads can reduce the drive range by as much as 45% under ambient temperatures below −10 °C. Often, cabin heating relies purely on positive temperature coefficient (PTC) resistive heating, contributing to a significant range loss. Reducing this range loss may improve consumer acceptance of BEVs. The authors present a unified thermal management system (UTEMPRA) that satisfies diverse thermal and design needs of the auxiliary loads in BEVs.
Technical Paper

Torsional Vibration Analysis of Six Speed MT Transmission and Driveline from Road to Lab

2017-06-05
2017-01-1845
When a manual transmission (MT) powertrain is subjected to high speeds and high torques, the vehicle driveshaft, and other components experience an increase in stored potential energy. When the engine and driveshaft are decoupled during an up or down shift, the potential energy is released causing clunk during the shift event. The customer desires a smooth shift thus reduction of clunk will improve experience and satisfaction. In this study, a six-speed MT, rear-wheel-drive (RWD) passenger vehicle was used to experimentally capture acoustic and vibration data during the clunk event. To replicate the in-situ results, additional data was collected and analyzed for powertrain component roll and pitch. A lumped parameter model of key powertrain components was created to replicate the clunk event and correlate with test data. The lumped parameter model was used to modify clutch tip-out parameters, which resulted in reduced prop shaft oscillations.
Technical Paper

Torque Weighting Vibration Dose Value to Aid Powertrain Calibration Process for Transient Torque Maneuvers

2021-08-31
2021-01-1034
This paper investigates the application of torque weighting to vibration dose value. This is done as a means to enhance correlation of perceived drive comfort directly to driver pedal commands while rejecting uncorrelated inputs. Current industry standards for vehicle comfort are formulated and described by ISO2631, which is a culmination of research with single or multi-axis vibration of narrow or broadband excitation. The standard is capable of estimating passenger comfort to vibrations, however, it only accounts for reaction vibrations to controlled inputs and not perceived vibration request vs. response vibration. Metrics that account for torque inputs and the vibration response create actionable estimates of dosage due to driver torque requests without uncorrelated inputs. This reduces the need for additional accelerometers and special compensating algorithms when road or track testing. The use case for the proposed modified metric is during the powertrain calibration process.
Technical Paper

Tier 2 Intermediate Useful Life (50,000 Miles) and 4000 Mile Supplemental Federal Test Procedure (SFTP) Exhaust Emission Results for a NOx Adsorber and Diesel Particle Filter Equipped Light-Duty Diesel Vehicle

2005-04-11
2005-01-1755
Due to its high efficiency and superior durability the diesel engine is again becoming a prime candidate for future light-duty vehicle applications within the United States. While in Europe the overall diesel share exceeds 40%, the current diesel share in the U.S. is 1%. Despite the current situation and the very stringent Tier 2 emission standards, efforts are being made to introduce the diesel engine back into the U.S. market. In order to succeed, these vehicles have to comply with emissions standards over a 120,000 miles distance while maintaining their excellent fuel economy. The availability of technologies such as high-pressure common-rail fuel systems, low sulfur diesel fuel, NOx adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with the light-duty Tier 2 emission requirements. In support of this, the U.S.
Technical Paper

The Vehicle Engine Cooling System Simulation Part 1 - Model Development

1999-03-01
1999-01-0240
The Vehicle Engine Cooling System Simulation (VECSS) computer code has been developed at the Michigan Technological University to simulate the thermal response of the cooling system of an on-highway heavy duty diesel powered truck under steady and transient operation. This code includes an engine cycle analysis program along with various components for the four main fluid circuits for cooling air, cooling water, cooling oil, and intake air, all evaluated simultaneously. The code predicts the operation of the response of the cooling circuit, oil circuit, and the engine compartment air flow when the VECSS is operated using driving cycle data of vehicle speed, engine speed, and fuel flow rate for a given ambient temperature, pressure and relative humidity.
Technical Paper

The Theoretical Development of Vehicle Engine Cooling Airflow Models Using Incompressible Flow Methods

1991-02-01
910644
A one-dimensional incompressible flow model covering the mechanisms involved in the airflow through an automotive radiator-shroud-fan system with no heat transfer was developed. An analytical expression to approximate the experimentally determined fan performance characteristics was used in conjunction with an analytical approach for this simplified cooling airflow model, and the solution is discussed with illustrations. A major result of this model is a closed form equation relating the transient velocity of the air to the vehicle speed, pressure rise characteristics and speed of the fan, as well as the dimensions and resistance of the radiator. This provides a basis for calculating cooling airflow rate under various conditions. The results of the incompressible flow analysis were further compared with the computational results obtained with a previously developed one-dimensional, transient, compressible flow model.
Technical Paper

The Influence of Pneumatic Atomization on the Lean Limit and IMEP

1989-02-01
890431
Lean limit characteristics of a pneumatic port fuel injection system is compared to a conventional port fuel injection system. The lean limit was based on the measured peak pressure. Those cycles with peak pressures greater than 105 % of the peak pressure for a nonfiring cycle were counted. Experimental data suggests that there are differences in lean limit characteristics between the two systems studied, indicating that fuel preparation processes in these systems influence the lean limit behaviors. Lean limits are generally richer for pneumatic fuel injection than those for conventional fuel injection. At richer fuel-to-air ratios the pneumatic injector usually resulted in higher torques. A simple model to estimate the evaporation occurring in the inlet manifold provided an explanation for the observed data.
Journal Article

The Influence of Diesel End-of-Injection Rate Shape on Combustion Recession

2015-04-14
2015-01-0795
The effect of the shape of the EOI was investigated through a pressure-modulated injection system in order to improve the understanding of the last portion of the traditional diesel diffusion combustion process. Here, the combustion recession at EOI is when the combustion of a mixing controlled diesel jet recedes backwards toward the fuel injector nozzle orifice. Combustion recession was observed using combustion luminosity imaging filtered at 309 nm to capture OH* chemiluminescence and 430 nm to capture CH* chemiluminescence, although soot Natural Luminosity (NL) will also be visible in these measurements. Experimental spray vessel results show that for relatively slow EOI decelerations below 1 ×106 to 2 ×106 m/s2, combustion strongly recesses completely back to the nozzle in both OH* and CH*/NL imaging. 1-D jet mixing calculations add support that this strong recession is indeed fuel rich.
Technical Paper

The Filtration, Oxidation and Pressure Drop Characteristics of a Catalyzed Particulate Filter during Active Regeneration – A 1D Modeling Study

2009-04-20
2009-01-1274
Active regeneration of a catalyzed particulate filter (CPF) is affected by a number of parameters specifically particulate matter loading and inlet temperature. The MTU 1-D 2-Layer CPF model [1] was used to analyze these effects on the pressure drop, oxidation and filtration characteristics of a CPF during active regeneration. In addition, modeling results for post loading experiments were analyzed to understand the difference between loading a clean filter as compared to a partially regenerated filter. Experimental data obtained with a production Cummins regenerative particulate filter for loading, active regenerations and post loading experiments were used to calibrate the MTU 1-D 2-Layer CPF model. The model predicted results are compared with the experimental data and were analyzed to understand the CPF characteristics during active regeneration at 1.1, 2.2 and 4.1 g/L particulate matter (PM) loading and CPF inlet temperatures of 525, 550 and 600°C.
Technical Paper

The Filtration and Particulate Matter Oxidation Characteristics of a Catalyzed Wall-Flow Diesel Particulate Filter: Experimental and 1-D 2-Layer Model Results

2005-04-11
2005-01-0949
A 1-D 2-layer model developed previously at MTU was used in this research to predict the pressure drop, filtration characteristics and various properties of the particulate filter and the particulate deposit layer. The model was calibrated and validated for this CPF with data obtained from steady state experiments conducted using a 1995 Cummins M11-330E heavy-duty diesel engine with manual EGR and using ULSF. The CPF used is a NGK filter having a cordierite substrate with NEX catalyst type formulation (54% porosity, 15.0 μm mean pore diameter and 50 gms/ft3 Pt). The filter was catalyzed using a wash coat process. The model was used to predict the pressure drop, particulate mass retained inside the CPF, particulate mass filtration efficiency and concentration downstream of the CPF with agreement between the experimental and simulated data.
Technical Paper

The Evaluation of the Impact of New Technologies for Different Powertrain Medium-Duty Trucks on Fuel Consumption

2016-09-27
2016-01-8134
In this paper, researchers at the National Renewable Energy Laboratory present the results of simulation studies to evaluate potential fuel savings as a result of improvements to vehicle rolling resistance, coefficient of drag, and vehicle weight as well as hybridization for four powertrains for medium-duty parcel delivery vehicles. The vehicles will be modeled and simulated over 1,290 real-world driving trips to determine the fuel savings potential based on improvements to each technology and to identify best use cases for each platform. The results of impacts of new technologies on fuel saving will be presented, and the most favorable driving routes on which to adopt them will be explored.
Technical Paper

The Effects of a Porous Ceramic Particulate Trap on the Physical, Chemical and Biological Character of Diesel Particulate Emissions

1983-02-01
830457
Physical, chemical, and biological characterization data for the particulate emissions from a Caterpillar 3208 diesel engine with and without Corning porous ceramic particulate traps are presented. Measurements made at EPA modes 3,4,5,9,lO and 11 include total hydrocarbon, oxides of nitrogen and total particulate matter emissions including the solid fraction (SOL), soluble organic fraction (SOF) and sulfate fraction (SO4), Chemical character was defined by fractionation of the SOF while biological character was defined by analysis of Ames Salmonella/ microsome bioassay data. The trap produced a wide range of total particulate reduction efficiencies (0-97%) depending on the character of the particulate. The chemical character of the SOF was significantly changed through the trap as was the biological character. The mutagenic specific activity of the SOF was generally increased through the trap but this was offset by a decrease in SOF mass emissions.
Technical Paper

The Effects of Two Catalyzed Particulate Filters on Exhaust Emissions from a Heavy Duty Diesel Engine: Filtration and Particulate Matter Oxidation Characteristics Studied Experimentally and Using a 1- D 2- Layer Model

2005-04-11
2005-01-0950
A 1-D 2-layer model developed previously at MTU was used in this research to predict the pressure drop, filtration characteristics and various properties of the particulate filter and the particulate deposit layer. The model was used along with dilute emission data to characterize two catalyzed particulate filters (CPFs) having different catalyst loading and catalyst application processes. The model was calibrated and validated with data obtained from steady state experiments conducted using a 1995 Cummins M11-330E heavy-duty diesel engine with manual EGR with different fuels for the two different CPFs. The two different catalyzed particulate filters were CPF III (5 gms/ft3 Pt) and CPF V (50 gms/ft3 Pt). Both the CPFs had cordierite substrates with CPF III and CPF V had MEX and NEX catalyst type formulation respectively. The CPF III filter was catalyzed using a solution-impregnated process while the CPF V filter was catalyzed using a wash coat process.
X