Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

Tribodynamics of a New De-Clutch Mechanism Aimed for Engine Downsizing in Off-Road Heavy-Duty Vehicles

2017-06-05
2017-01-1835
Clutches are commonly utilised in passenger type and off-road heavy-duty vehicles to disconnect the engine from the driveline and other parasitic loads. In off-road heavy-duty vehicles, along with fuel efficiency start-up functionality at extended ambient conditions, such as low temperature and intake absolute pressure are crucial. Off-road vehicle manufacturers can overcome the parasitic loads in these conditions by oversizing the engine. Caterpillar Inc. as the pioneer in off-road technology has developed a novel clutch design to allow for engine downsizing while vehicle’s performance is not affected. The tribological behaviour of the clutch will be crucial to start engagement promptly and reach the maximum clutch capacity in the shortest possible time and smoothest way in terms of dynamics. A multi-body dynamics model of the clutch system is developed in MSC ADAMS. The flywheel is introducing the same speed and torque as the engine (represents the engine input to the clutch).
Journal Article

Transient, Three Dimensional CFD Model of the Complete Engine Lubrication System

2016-04-05
2016-01-1091
This paper reports on a comprehensive, crank-angle transient, three dimensional, computational fluid dynamics (CFD) model of the complete lubrication system of a multi-cylinder engine using the CFD software Simerics-Sys / PumpLinx. This work represents an advance in system-level modeling of the engine lubrication system over the current state of the art of one-dimensional models. The model was applied to a 16 cylinder, reciprocating internal combustion engine lubrication system. The computational domain includes the positive displacement gear pump, the pressure regulation valve, bearings, piston pins, piston cooling jets, the oil cooler, the oil filter etc… The motion of the regulation valve was predicted by strongly coupling a rigorous force balance on the valve to the flow.
Journal Article

The Visualization of Soot Late in the Diesel Combustion Process by Laser Induced Incandescence with a Vertical Laser Sheet

2015-04-14
2015-01-0801
Although soot-formation processes in diesel engines have been well characterized during the mixing-controlled burn, little is known about the distribution of soot throughout the combustion chamber after the end of appreciable heat release during the expansion and exhaust strokes. Hence, the laser-induced incandescence (LII) diagnostic was developed to visualize the distribution of soot within an optically accessible single-cylinder direct-injection diesel engine during this period. The developed LII diagnostic is semi-quantitative; i.e., if certain conditions (listed in the Appendix) are true, it accurately captures spatial and temporal trends in the in-cylinder soot field. The diagnostic features a vertically oriented and vertically propagating laser sheet that can be translated across the combustion chamber, where “vertical” refers to a direction parallel to the axis of the cylinder bore.
Technical Paper

Strategies for Developing Performance Standards for Alternative Hydraulic Fluids

2000-09-11
2000-01-2540
There has been an ongoing interest in replacing mineral oil with more biodegradable and/or fire-resistant hydraulic fluids in many mobile equipment applications. Although many alternative fluids may be more biodegradable, or fire-resistant, or both than mineral oil, they often suffer from other limitations such as poorer wear, oxidative stability, and yellow metal corrosion which inhibit their performance in high-pressure hydraulic systems, particularly high pressure piston pump applications. From the fluid supplier's viewpoint, the development of a definitive test, or series of tests, that provides sufficient information to determine how a given fluid would perform with various hydraulic components would be of interest because it would minimize extensive testing. This is often too slow or prohibitively expensive. Furthermore, from OEM's (original equipment manufacturer's) point of view, it would be advantageous to develop a more effective, industry accepted fluid analysis screening.
Technical Paper

Scuff Resistance Rig Test for Piston Ring Face Coatings

1997-02-24
970819
A laboratory method has been developed to rank the scuff resistance of piston ring coatings. This method employs a standard wear test apparatus with a specially designed sample holder. Scuff resistance of electrolytic chrome, thermal spray and physical vapor deposition (PVD) face coatings have been examined. Based on this method, examined PVD coatings produced the highest scuff resistance of all the tested face coatings.
Technical Paper

Resistance of 40% Glass-Reinforced PPS to Automotive Underhood Fluids

1981-11-01
811356
Laboratory tests have shown that 40% glass-reinforced PPS is suitable for automotive underhood use where it comes into contact with used engine oil, gasoline/alcohol, gasoline/MTBE, water, water/ethylene glycol, hydraulic fluid, and transmission fluid at elevated temperatures. On exposure to water or water/ethylene glycol at 248° F (120° C) and 257°F (125°C), respectively, there is a sharp decline in mechanical strength in the first few weeks with little change thereafter. The residual strength of the 40% glass-reinforced PPS is comparable to, or better than other materials, such as phenolics, which have proved satisfactory in such usage. These results have been translated to successful applications in heavy duty diesel engines. Piston cooling nozzles and water pump impellers made of 40% glass-reinforced PPS have undergone successful engine component evaluations.
Technical Paper

Plastic Oil Rings for Diesel Engines: A Preliminary Evaluation

1996-02-01
960049
The ability of a piston oil ring to conform to liner distortions during engine operation is directly related to its radial stiffness. The ability to conform is also very important for controlling lubricant oil consumption and emissions. This paper describes the procedure utilized to investigate the technical feasibility of using flexible high performance engineering plastics to replace metal as base material for oil rings. Bench tests and engines were used to select and evaluate different types of plastics for wear resistance and structural integrity. Engine test results indicated no structural failures but wear levels were found to be unacceptably high for use in durable heavy duty diesel engines.
Technical Paper

Methodology to Perform Conjugate Heat Transfer Modeling for a Piston on a Sector Geometry for Direct-Injection Internal Combustion Engine Applications

2019-04-02
2019-01-0210
The increase in computational power in recent times has led to multidimensional computational fluid dynamics (CFD) modeling tools being used extensively for optimizing the diesel engine piston design. However, it is still common practice in engine CFD modeling to use constant uniform boundary temperatures. This is either due to the difficulty in experimentally measuring the component temperatures or the lack of measurements when simulation is being used predictively. This assumption introduces uncertainty in heat flux predictions. Conjugate heat transfer (CHT) modeling is an approach used to predict the component temperatures by simultaneously modeling the heat transfer in the fluid and the solid phase. However, CHT simulations are computationally expensive as they require more than one engine cycle to be simulated to converge to a steady cycle-averaged component temperature.
Journal Article

Influence of Injection Timing and Piston Bowl Geometry on PCCI Combustion and Emissions

2009-04-20
2009-01-1102
Premixed Charge Compression Ignition (PCCI), a Low Temperature Combustion (LTC) strategy for diesel engines is of increasing interest due to its potential to simultaneously reduce soot and NOx emissions. However, the influence of mixture preparation on combustion phasing and heat release rate in LTC is not fully understood. In the present study, the influence of injection timing on mixture preparation, combustion and emissions in PCCI mode is investigated by experimental and computational methods. A sequential coupling approach of 3D CFD with a Stochastic Reactor Model (SRM) is used to simulate the PCCI engine. The SRM accounts for detailed chemical kinetics, convective heat transfer and turbulent micro-mixing. In this integrated approach, the temperature-equivalence ratio statistics obtained using KIVA 3V are mapped onto the stochastic particle ensemble used in the SRM.
Technical Paper

Improved Method for Studying MCCI Flame Interactions with an Engine Combustion Chamber

2021-04-06
2021-01-0507
An improved method for studying mixing-controlled compression ignition (MCCI) flame interactions with an engine combustion chamber has been developed. It is implemented in a constant pressure vessel, which contains a portion of a piston and a portion of a cylinder head, where the cylinder head is emulated by a transparent fused silica window. This method allows for vaporizing or combusting fuel jets to be imaged from two orthogonal directions. The piston and cylinder head can be adjusted to emulate in-engine piston positions from top dead center (TDC) to approximately 15 mm away from TDC. The design allows for pistons from engine bore sizes up to approximately 175 mm to be studied, including the ability to simulate injector spray included angles from 120°-180°. In this study, the piston was made as an extruded piston bowl profile, where the length of the extrusion approximated the arc length between two neighboring jets from a 6-hole injector.
Technical Paper

HVOF Cermet Coatings for High Horse Power Diesel Engines

1997-02-24
970817
High Velocity Oxygen Fuel sprayed face coatings have shown great promise for piston rings used for High Power Density Diesel Engines. Various coatings have been tested on both wear test rigs and in engines. A highly dense HVOF cermet coating was developed with reasonable crack resistance during service. The HVOF coated piston rings wore three to six times lower than chrome plating. Cylinder liner (counter face) wear was found to be one to three times higher than chrome. However, engine oil consumption and blow by were within normal values. The HVOF coating is considered to be an excellent replacement for chrome plating. The coating process is more environmentally friendly than the chrome plating process. Also, the coating has potentially lower or equivalent production cost when compared to chrome.
Technical Paper

Estimating Instantaneous Losses Within a Firing IC Engine Using Synthetic Variables

2011-04-12
2011-01-0611
A new method for instantaneous friction estimation in firing internal combustion engines has been developed in the Powertrain Control Research Laboratory (PCRL) at the University of Wisconsin - Madison. This Synthetic Variable approach, which has previously been used for combustion quality diagnostics, focuses on carefully measuring instantaneous engine speed and other easily measurable engine variables and combining them with dynamic models of other engine processes. This approach numerically strips away the dynamic effects that mask friction effects on engine speed and reveals friction estimates with clarity. This information could be useful for engine designers and developers to assist in accurately understanding the sources of instantaneous friction within the running engine. The friction results from these studies have been very encouraging.
Technical Paper

Effects of Piston Crevice Flows and Lubricant Oil Vaporization on Diesel Engine Deposits

2006-04-03
2006-01-1149
The effect of piston ring pack crevice flow and lubricant oil vaporization on heavy-duty diesel engine deposits is investigated numerically using a multidimensional CFD code, KIVA3V, coupled with Chemkin II, and computational grids that resolve part of the crevice region appropriately. Improvements have been made to the code to be able to deal with the complex geometry of the ring pack, and sub-models for the crevice flow dynamics, lubricating oil vaporization and combustion, soot formation and deposition were also added to the code. Eight parametric cases were simulated under reacting conditions using detailed chemical kinetics to determine the effects of variations of lube-oil film thickness, distribution of the oil film thickness, number of injection pulses, and the main injection timing on engine soot deposition. The results show that crevice-borne hydrocarbon species play an important role in deposit formation on crevice surfaces.
Journal Article

Early Direct-Injection, Low-Temperature Combustion of Diesel Fuel in an Optical Engine Utilizing a 15-Hole, Dual-Row, Narrow-Included-Angle Nozzle

2008-10-06
2008-01-2400
Low-temperature combustion of diesel fuel was studied in a heavy-duty, single-cylinder, optical engine employing a 15-hole, dual-row, narrow-included-angle nozzle (10 holes × 70° and 5 holes × 35°) with 103-μm-diameter orifices. This nozzle configuration provided the spray targeting necessary to contain the direct-injected diesel fuel within the piston bowl for injection timings as early as 70° before top dead center. Spray-visualization movies, acquired using a high-speed camera, show that impingement of liquid fuel on the piston surface can result when the in-cylinder temperature and density at the time of injection are sufficiently low. Seven single- and two-parameter sweeps around a 4.82-bar gross indicated mean effective pressure load point were performed to map the sensitivity of the combustion and emissions to variations in injection timing, injection pressure, equivalence ratio, simulated exhaust-gas recirculation, intake temperature, intake boost pressure, and load.
Technical Paper

Ducted Fuel Injection: Confirmed Re-entrainment Hypothesis

2024-04-09
2024-01-2885
Testing of ducted fuel injection (DFI) in a single-cylinder engine with production-like hardware previously showed that adding a duct structure increased soot emissions at the full load, rated speed operating point [1]. The authors hypothesized that the DFI flame, which travels faster than a conventional diesel combustion (CDC) flame, and has a shorter distance to travel, was being re-entrained into the on-going fuel injection around the lift-off length (LOL), thus reducing air entrainment into the on-going injection. The engine operating condition and the engine combustion chamber geometry were duplicated in a constant pressure vessel. The experimental setup used a 3D piston section combined with a glass fire deck allowing for a comparison between a CDC flame and a DFI flame via high-speed imaging. CH* imaging of the 3D piston profile view clearly confirmed the re-entrainment hypothesis presented in the previous engine work.
Technical Paper

Diesel Piston Debond - A Perspective

2000-03-06
2000-01-1233
Diesel engine operation under high load conditions (>45 hp/cyl) may result in piston “debond” in which the Ni-resist ring carrier separates from the aluminum piston matrix leading to destruction of the piston. Historically, engine loads have increased to achieve higher power densities which together with more stringent emissions requirements have resulted in greatly increased stress levels in the piston. The higher stresses have resulted in debond failure. The design of the ring carrier will affect debond failure. Deformation of the ring carrier will initiate debond at the back of the insert at the junction with the piston matrix. The ring carrier cross-section must be made robust enough through proper design to achieve expected reliability. Another factor influencing ring carrier retention is the quality of the AlFin bond layer. Casting defects which arise from the AlFin bonding process, degrade the strength of the joint leading to failure.
Technical Paper

Development of a Fiber Reinforced Aluminum Piston for Heavy Duty Diesel Engines

1994-03-01
940584
This paper discusses a joint customer-supplier program intended to further develop the ability to design and apply aluminum alloy pistons selectively reinforced with ceramic fibers for heavy duty diesel engines. The approach begins with a comprehensive mechanical properties evaluation of base and reinforced material. The results demonstrated significant fatigue strength improvement due to fiber reinforcement, specially at temperatures greater than 300°C. A simplified numerical analysis is performed to predict the temperature and fatigue factor values at the combustion bowl area for conventional and reinforced aluminum piston designs for a 6.6 liter engine. It concludes that reinforced piston have a life expectation longer than conventional aluminum piston. Structural engine tests under severe conditions of specific power and peak cylinder pressure were used to confirm the results of the cyclic properties evaluation and numerical analysis.
Technical Paper

Development of Plasma Spray Coated Cylinder Liners

1996-02-01
960048
Improved fuel economy and reduction of emissions can be achieved by insulation of the combustion chamber components to reduce heat rejection. However, such insulation will also increase the operating temperature of the piston ring/cylinder liner interface from approximately 150°C to over 300°C. Since existing ring/liner materials cannot withstand these higher operating temperatures alternatives are needed for this critical tribological interface. This paper describes the development of a cost effective ID grinding technique for machining the bores of plasma sprayed diesel engine cylinder liners.
Technical Paper

Analysis of a Heavy-Duty Diesel Piston Inducing Material, Air Gap, and Thermal Barrier Coating Effects

1988-02-01
880671
This work evaluates the thermal and structural integrity of a heavy duty diesel piston using finite element analysis. The effects of aluminum, ductile iron, and superalloy piston materials; air gaps; and plasma-sprayed zirconia coating on piston temperature and stress, as well as on heat flux through the piston, are assessed. The coating lowered the heat flux through the piston 56 percent and caused other changes in the piston to have an insignificant effect on the heat flux. The air gaps had the least effect on heat flux with substantially lower safety margins than pistons without air gaps.
Technical Paper

A Comparison of Time-Averaged Piston Temperatures and Surface Heat Flux Between a Direct-Fuel Injected and Carbureted Two-Stroke Engine

1998-02-23
980763
Time-averaged temperatures at critical locations on the piston of a direct-fuel injected, two-stroke, 388 cm3, research engine were measured using an infrared telemetry device. The piston temperatures were compared to data [7] of a carbureted version of the two-stroke engine, that was operated at comparable conditions. All temperatures were obtained at wide open throttle, and varying engine speeds (2000-4500 rpm, at 500 rpm intervals). The temperatures were measured in a configuration that allowed for axial heat flux to be determined through the piston. The heat flux was compared to carbureted data [8] obtained using measured piston temperatures as boundary conditions for a computer model, and solving for the heat flux. The direct-fuel-injected piston temperatures and heat fluxes were significantly higher than the carbureted piston. On the exhaust side of the piston, the direct-fuel injected piston temperatures ranged from 33-73 °C higher than the conventional carbureted piston.
X