Refine Your Search

Topic

Author

Search Results

Technical Paper

World Fuels and Modern Fuel Systems - A Path to Coexistence

2015-09-29
2015-01-2818
All around the world, steps are being taken to improve the quality of our environment. Prominent among these are the definition, implementation, and attainment of increasingly stringent emissions regulations for all types of engines, including off-highway diesels. These rigorous regulations have driven use of technologies like after-treatment, advanced air systems, and advanced fuel systems. Fuel dispensed off-highway is routinely and significantly dirtier than fuel from on-highway outlets. Furthermore, fuels used in developing countries can be up to 30 times dirtier than the average fuels in North America. Poor fuel cleanliness, coupled with the higher pressures and performance demands of modern fuel systems, create life challenges greater than encountered with cleaner fuels. This can result in costly disruption of operations, loss of productivity, and customer dissatisfaction in the off-highway market.
Technical Paper

Using Pilot Diesel Injection in a Natural Gas Fueled HCCI Engine

2002-10-21
2002-01-2866
Previous research has shown that the homogeneous charge compression ignition (HCCI) combustion concept holds promise for reducing pollutants (i.e. NOx, soot) while maintaining high thermal efficiency. However, it can be difficult to control the operation of the HCCI engines even under steady state running conditions. Power density may also be limited if high inlet air temperatures are used for achieving ignition. A methodology using a small pilot quantity of diesel fuel injected during the compression stroke to improve the power density and operation control is considered in this paper. Multidimensional computations were carried out for an HCCI engine based on a CAT3401 engine. The computations show that the required initial temperature for ignition is reduced by about 70 K for the cases of the diesel pilot charge and a 25∼35% percent increase in power density was found for those cases without adversely impacting the NOx emissions.
Technical Paper

Thermal and Chemical Aging of Diesel Particulate Filters

2007-04-16
2007-01-1266
The effects of thermal and chemical aging on the performance of cordierite-based and high-porosity mullite-based diesel particulate filters (DPFs), were quantified, particularly their filtration efficiency, pressure drop, and regeneration capability. Both catalyzed and uncatalyzed core-size samples were tested in the lab using a diesel fuel burner and a chemical reactor. The diesel fuel burner generated carbonaceous particulate matter with a pre-specified particle-size distribution, which was loaded in the DPF cores. As the particulate loading evolved, measurements were made for the filtration efficiency and pressure drop across the filter using, respectively, a Scanning Mobility Particle Sizer (SMPS) and a pressure transducer. In a subsequent process and on a different bench system, the regeneration capability was tested by measuring the concentration of CO plus CO2 evolved during the controlled oxidation of the carbonaceous species previously deposited on the DPF samples.
Technical Paper

The Impact of RoHS on Electric Vehicles in the Chinese Automotive Market

2016-09-27
2016-01-8124
China has become the world’s largest vehicle market in terms of sales volume. Automobiles sales keep growing in recent years despite the declining economic growth rate. Due to the increasing attention given to the environmental impact, more stringent emission regulations are being drafted to control traditional internal combustion engine emissions. In order to reduce vehicle emissions, environmentally-friendly new-energy vehicles, such as electric vehicles and plug-in hybrid vehicles, are being promoted by government policies. The Chinese government plans to boost sales of new-energy cars to account for about five percent of China’s total vehicle sales. It is well known that more electric and electronic components will be integrated into a vehicle platform during vehicle electrification.
Technical Paper

The Impact of Fuel Properties on Diesel Engine Emissions and a Feasible Solution for Common Calibration

2014-09-30
2014-01-2367
Fuel properties impact the engine-out emission directly. For some geographic regions where diesel engines can meet emission regulations without aftertreatment, the change of fuel properties will lead to final tailpipe emission variation. Aftertreatment systems such as Diesel Particulate Filter (DPF) and Selective Catalytic Reduction (SCR) are required for diesel engines to meet stringent regulations. These regulations include off-road Tier 4 Final emission regulations in the USA or the corresponding Stage IV emission regulations in Europe. As an engine with an aftertreatment system, the change of fuel properties will also affect the system conversion efficiency and regeneration cycle. Previous research works focus on prediction of engine-out emission, and many are based on chemical reactions. Due to the complex mixing, pyrolysis and reaction process in heterogeneous combustion, it is not cost-effective to find a general model to predict emission shifting due to fuel variation.
Technical Paper

The Effects of Oxygenate and Gasoline-Diesel Fuel Blends on Diesel Engine Emissions

2000-03-06
2000-01-1173
A study was performed in which the effects on the regulated emissions from a commercial small DI diesel engine were measured for different refinery-derived fuel blends. Seven different fuel blends were tested, of which two were deemed to merit more detailed evaluation. To investigate the effects of fuel properties on the combustion processes with these fuel blends, two-color pyrometry was used via optically accessible cylinderheads. Additional data were obtained with one of the fuel blends with a heavy-duty DI diesel engine. California diesel fuel was used as a baseline. The fuel blends were made by mixing the components typically found in gasoline, such as methyl tertiary-butyl ether (MTBE) and whole fluid catalytic cracking gasoline (WH-FCC). The mixing was performed on a volume basis. Cetane improver (CI) was added to maintain the same cetane number (CN) of the fuel blends as that of the baseline fuel.
Technical Paper

The Effect of Fuel Aromatic Structure and Content on Direct Injection Diesel Engine Particulates

1992-02-01
920110
A single cylinder, Cummins NH, direct-injection, diesel engine has been operated in order to evaluate the effects of aromatic content and aromatic structure on diesel engine particulates. Results from three fuels are shown. The first fuel, a low sulfur Chevron diesel fuel was used as a base fuel for comparison. The other fuels consisted of the base fuel and 10% by volume of 1-2-3-4 tetrahydronaphthalene (tetralin) a single-ring aromatic and naphthalene, a double-ring aromatic. The fuels were chosen to vary aromatic content and structure while minimizing differences in boiling points and cetane number. Measurements included exhaust particulates using a mini-dilution tunnel, exhaust emissions including THC, CO2, NO/NOx, O2, injection timing, two-color radiation, soluble organic fraction, and cylinder pressure. Particulate measurements were found to be sensitive to temperature and flow conditions in the mini-dilution tunnel and exhaust system.
Technical Paper

Temperature Effects on Fuel Sprays from a Multi-Hole Nozzle Injector

1996-10-01
962005
A study of fuel spray characteristics for diesel fuel from a multi-hole nozzle injector was performed yielding tip penetration length and spray cone angle for each of the spray plumes from a six hole injector. The main feature of the system used was that analysis of all the fuel plumes could occur at one time, as all the plumes were imaged on the same piece of film. Spray behavior was examined for two injection pressures (72 MPa and 122 MPa) and for ambient temperatures up to 523 K (250°C). The results in this paper show how the spray plumes behave as they leave each of the six holes of the injector. The characteristics of each hole differs during injection. The variations of spray cone angle and tip penetration length between holes are small, but significant. These variations in tip penetration and cone angle changed as the temperature of the chamber changed, but the overall characteristics of the spray plumes changed only slightly for the temperatures used in this paper.
Technical Paper

Steady-State Engine Testing of γ-Alumina Catalysts Under Plasma Assist for NOx Control in Heavy-Duty Diesel Exhaust

2003-03-03
2003-01-1186
A slipstream of exhaust from a Caterpillar 3126B engine was diverted into a plasma-catalytic NOx control system in the space velocity range of 7,000 to 100,000 hr-1. The stream was first fed through a non-thermal plasma that was formed in a coaxial cylinder dielectric barrier discharge reactor. Plasma treated gas was then passed over a catalyst bed held at constant temperature in the range of 573 to 773 K. Catalysts examined consisted of γ-alumina, indium-doped γ-alumina, and silver-doped γ-alumina. Road and rated load conditions resulted in engine out NOx levels of 250 - 600 ppm. The effects of hydrocarbon level, catalyst temperature, and space velocity are discussed where propene and in one case ultra-low sulfur diesel fuel (late cycle injection) were the reducing agents used for NOx reduction. Results showed NOx reduction in the range of 25 - 97% depending on engine operating conditions and management of the catalyst and slipstream conditions.
Technical Paper

Spectral Characteristics of Turbulent Flow in a Scale Model of a Diesel Fuel Injector Nozzle

1993-03-01
930924
An experimental investigation of the spectral characteristics of turbulent flow in a scale model of a high pressure diesel fuel injector nozzle hole has been conducted. Instantaneous velocity measurements were made in a 50X transparent model of one hole of an injector nozzle using an Aerometrics Phase/Doppler Particle Analyzer (PDPA) in the velocity mode. Turbulence spectra were calculated from the velocity data using the Lomb-Scargle method. Injector hole length to diameter ratio (L/D) values of 1.3, 2.4, 4.9, and 7.7 and inlet radius to diameter ratio (R/D) values of approximately 0 and 0.3 were investigated. Results were obtained for a steady flow average Reynolds number of 10,500, which is analogous to a fuel injection velocity of 320 m/s and a sac pressure of approximately 67 MPa (10,000 psi). Turbulence time frequency spectra were obtained for significant locations in each geometry, in order to determine how geometry affects the development of the turbulent spectra.
Technical Paper

Progress in Diesel Engine Intake Flow and Combustion Modeling

1993-09-01
932458
The three-dimensional computer code, KIVA, is being modified to include state-of-the-art submodels for diesel engine flow and combustion. Improved and/or new submodels which have already been implemented are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NOx, and spray/wall impingement with rebounding and sliding drops. Progress on the implementation of improved spray drop drag and drop breakup models, the formulation and testing of a multistep kinetics ignition model and preliminary soot modeling results are described. In addition, the use of a block structured version of KIVA to model the intake flow process is described. A grid generation scheme has been developed for modeling realistic (complex) engine geometries, and initial computations have been made of intake flow in the manifold and combustion chamber of a two-intake-valve engine.
Technical Paper

Potentials of Electrical Assist and Variable Geometry Turbocharging System for Heavy-Duty Diesel Engine Downsizing

2017-03-28
2017-01-1035
Diesel engine downsizing aimed at reducing fuel consumption while meeting stringent exhaust emissions regulations is currently in high demand. The boost system architecture plays an essential role in providing adequate air flow rate for diesel fuel combustion while avoiding impaired transient response of the downsized engine. Electric Turbocharger Assist (ETA) technology integrates an electric motor/generator with the turbocharger to provide electrical power to assist compressor work or to electrically recover excess turbine power. Additionally, a variable geometry turbine (VGT) is able to bring an extra degree of freedom for the boost system optimization. The electrically-assisted turbocharger, coupled with VGT, provides an illuminating opportunity to increase the diesel engine power density and enhance the downsized engine transient response. This paper assesses the potential benefits of the electrically-assisted turbocharger with VGT to enable heavy-duty diesel engine downsizing.
Technical Paper

Optimization of an Asynchronous Fuel Injection System in Diesel Engines by Means of a Micro-Genetic Algorithm and an Adaptive Gradient Method

2008-04-14
2008-01-0925
Optimal fuel injection strategies are obtained with a micro-genetic algorithm and an adaptive gradient method for a nonroad, medium-speed DI diesel engine equipped with a multi-orifice, asynchronous fuel injection system. The gradient optimization utilizes a fast-converging backtracking algorithm and an adaptive cost function which is based on the penalty method, where the penalty coefficient is increased after every line search. The micro-genetic algorithm uses parameter combinations of the best two individuals in each generation until a local convergence is achieved, and then generates a random population to continue the global search. The optimizations have been performed for a two pulse fuel injection strategy where the optimization parameters are the injection timings and the nozzle orifice diameters.
Technical Paper

Optimization and Testing of a Through the Road Parallel, Hybrid-Electric, Crossover Sports Utility Vehicle

2009-04-20
2009-01-1318
The University of Wisconsin Hybrid Vehicle Team has implemented and optimized a four-wheel drive, charge sustaining, split-parallel hybrid-electric crossover vehicle for entry into the 2008 ChallengeX competition. This four year project is based on a 2005 Chevrolet Equinox platform. Fuel economy, greenhouse gas impact (GHGI), acceleration, component packaging and consumer acceptability were appropriately weighted to determine powertrain component selections. Wisconsin's Equinox, nicknamed the Moovada, is a split-parallel hybrid utilizing a General Motors (GM) 110 kW 1.9L CDTi (common rail diesel turbo injection) engine coupled to an F40 6-speed manual transmission. The rear axle is powered by a SiemensVDO induction motor/gearbox power-limited to 65 kW by a 40-module (288 volts nominal) Johnson Controls Inc, nickel-metal hydride battery pack.
Technical Paper

Multivariate Regression and Generalized Linear Model Optimization in Diesel Transient Performance Calibration

2013-10-14
2013-01-2604
With stringent emission regulations, aftertreatment systems with a Diesel Particulate Filter (DPF) and a Selective Catalytic Reduction (SCR) are required for diesel engines to meet PM and NOx emissions. The adoption of aftertreatment increases the back pressure on a typical diesel engine and makes engine calibration a complicated process, requiring thousands of steady state testing points to optimize engine performance. When configuring an engine to meet Tier IV final emission regulations in the USA or corresponding Stage IV emission regulations in Europe, this high back pressure dramatically impacts transient performance. The peak NOx, smoke and exhaust temperature during a diesel engine transient cycle, such as the Non-Road Transient Cycle (NRTC) defined by the US Environmental Protection Agency (EPA), will in turn affect the performance of the aftertreatment system and the tailpipe emissions level.
Technical Paper

Multidimensional Modeling of Fuel Composition Effects on Combustion and Cold-Starting in Diesel Engines

1995-10-01
952425
A computer model developed for describing multicomponent fuel vaporization, and ignition in diesel engines has been applied in this study to understand cold-starting and the parameters that are of significant influence on this phenomena. This research utilizes recent improvements in spray vaporization and combustion models that have been implemented in the KIVA-II CFD code. Typical engine fuels are blends of various fuels species, i.e., multicomponent. Thus, the original single component fuel vaporization model in KIVA-II was replaced by a multicomponent fuel vaporization model (based on the model suggested by Jin and Borman). The modelhas been extended to model diesel sprays under typical diesel conditions, including the effect of fuel cetane number variation. Necessary modifications were carried out in the atomization and collision sub-models. The ignition model was also modified to account for fuel composition effects by modifying the Shell ignition model.
Technical Paper

Modelling the Influence of Fuel Injection Parameters on Diesel Engine Emissions

1998-02-23
980789
Rate shaping of the fuel injection process is known to significantly impact emissions production in diesel engines. To demonstrate the ability of multidimensional engine modeling to quantify and explain the effect of rate shaping and injection duration, three injection profiles typical of common diesel fuel injection systems were investigated for three injection durations and injection timings. The present study uses an improved version of the KIVA-II engine simulation code employing the characteristic time combustion model, the Kelvin-Helmholtz and the Rayleigh-Taylor spray atomization mechanisms, the extended Zeldovich thermal NOx production model, and a single species soot model.
Technical Paper

Measurement of Diesel Spray Impingement and Fuel Film Characteristics Using Refractive Index Matching Method

2007-04-16
2007-01-0485
The fuel film thickness resulting from diesel fuel spray impingement was measured in a chamber at conditions representative of early injection timings used for low temperature diesel combustion. The adhered fuel volume and the radial distribution of the film thickness are presented. Fuel was injected normal to the impingement surface at ambient temperatures of 353 K, 426 K and 500 K, with densities of 10 kg/m3 and 25 kg/m3. Two injectors, with nozzle diameters of 100 μm and 120 μm, were investigated. The results show that the fuel film volume was strongly affected by the ambient temperature, but was minimally affected by the ambient density. The peak fuel film thickness and the film radius were found to increase with decreased temperature. The fuel film was found to be circular in shape, with an inner region of nearly constant thickness. The major difference observed with temperature was a decrease in the radial extent of the film.
Technical Paper

Investigation of Premixed Fuel Composition and Pilot Reactivity Impact on Diesel Pilot Ignition in a Single-Cylinder Compression Ignition Engine

2023-04-11
2023-01-0282
This work experimentally investigates the impact of premixed fuel composition (methane/ethane, methane/propane, and methane/hydrogen mixtures having equivalent chemical energy) and pilot reactivity (cetane number) on diesel-pilot injection (DPI) combustion performance and emissions, with an emphasis on the pilot ignition delay (ID). To support the experimental pilot ignition delay trends, an analysis technique known as Mixing Line Concept (MLC) was adopted, where the cold diesel surrogate and hot premixed charge are envisioned to mix in a 0-D constant volume reactor to account for DPI mixture stratification. The results show that the dominant effect on pilot ignition is the pilot fuel cetane number, and that the premixed fuel composition plays a minor role. There is some indication of a physical effect on ignition for cases containing premixed hydrogen.
Technical Paper

Internal Flow in a Scale Model of a Diesel Fuel Injector Nozzle

1992-10-01
922308
An experimental investigation of turbulent flow patterns in a scale model of a high pressure diesel fuel injector nozzle has been conducted. Instantaneous velocity measurements were made in a 50X transparent model of one hole of the injector nozzle using an Aerometrics Phase Doppler Particle Analyzer (PDPA) in the velocity mode. Length to diameter ratio (L/D) values of 1.3, 2.4, 4.9, and 7.7 and inlet radius to diameter ratio (R/D) values of approximately 0 and 0.3 were investigated. Two steady flow average Reynolds numbers (10,500 and 13,300), analogous to fuel injection velocities and sac pressures of approximately 320 and 405 m/s and 67 and 107 MPa (10,000 and 16,000 psi), were investigated. The axial progression of mean and root mean square (rms) axial velocities was obtained for both sharp and rounded inlet conditions and varying L/D. The discharge coefficient was also calculated for each geometry.
X