Refine Your Search

Search Results

Viewing 1 to 9 of 9
Journal Article

UHC and CO Emissions Sources from a Light-Duty Diesel Engine Undergoing Dilution-Controlled Low-Temperature Combustion

2009-09-13
2009-24-0043
Unburned hydrocarbon (UHC) and carbon monoxide (CO) emission sources are examined in an optical, light-duty diesel engine operating under low load and engine speed, while employing a highly dilute, partially premixed low-temperature combustion (LTC) strategy. The impact of engine load and charge dilution on the UHC and CO sources is also evaluated. The progression of in-cylinder mixing and combustion processes is studied using ultraviolet planar laser-induced fluorescence (UV PLIF) to measure the spatial distributions of liquid- and vapor-phase hydrocarbon. A separate, deep-UV LIF technique is used to examine the clearance volume spatial distribution and composition of late-cycle UHC and CO. Homogeneous reactor simulations, utilizing detailed chemical kinetics and constrained by the measured cylinder pressure, are used to examine the impact of charge dilution and initial stoichiometry on oxidation behavior.
Technical Paper

Turbulent Flow Metal Substrates: A Way to Address Cold Start CO Emissions and to Optimize Catalyst Loading

2006-04-03
2006-01-1523
Modern Diesel Engines equipped with Common-Rail Direct Injection and EGR are characterized by an increasingly high combustion efficiency. Consequently the exhaust gas temperature, especially during a cold start, is significantly reduced compared to typical values measured in previous engine generations. This leads to a potential problem with CO emission limit compliance. The present paper deals with an experimental investigation of turbulent-flow metal substrates, carried out on a vehicle roller bench using a production 1.3 Liter diesel engine equipped passenger car. The tested metal supported catalysts proved to yield extremely high conversion rates both during cold start and in warm operation phase. The improved mass transfer efficiency of the advanced metal substrates is related on one hand to the optimized coating technology and, on the other hand, to the enhanced flow performance in the single converter channels which is caused by structured metal foils.
Technical Paper

Preparation and Characterization of Nanophase Gold Catalysts for Emissions Control

2008-10-07
2008-01-2639
Various gold catalysts were prepared using commercial and in-house fabricated advanced catalyst supports that included mesoporous silica, mesoporous alumina, sol-gel alumina, and transition metal oxides. Gold nanoparticles were loaded on the supports by co-precipitation, deposition-precipitation, ion exchange and surface functionalization techniques. The average gold particle size was ∼20nm or less. The oxidation activity of the prepared catalysts was studied using carbon monoxide and light hydrocarbons (ethylene, propylene and propane) in presence of water and CO2 and the results are presented.
Technical Paper

Performance and Emission Results from a Heavy-Duty Diesel Engine with Ducted Fuel Injection

2021-04-06
2021-01-0503
Ducted fuel injection (DFI) was tested for the first time in a heavy-duty diesel metal engine. It was implemented on a Caterpillar 2.5-liter single-cylinder heavy-duty diesel engine fitted with a common rail fuel system and a Tier 4 final production piston. Engine tests consisted of single-injection timing sweeps at A100 and C100, where rail pressure and exhaust gas recirculation (EGR) were also varied. A 6-hole fuel injector tip with 205 am orifices was used with a 130° spray angle and rail pressures up to 250 MPa. The ducts were 14 mm long, had a 2.5 mm inner diameter, and were placed 3.8 mm away from the orifice exits. The ducts were attached to a base, which in turn was attached to the cylinder head with bolts. Furthermore, alignment of the ducts and their corresponding fuel jets was accomplished.
Journal Article

On-Road Evaluation of a PEMS for Measuring Gaseous In-Use Emissions from a Heavy-Duty Diesel Vehicle

2008-04-14
2008-01-1300
On-road comparisons were made between a federal reference method mobile emissions laboratory (MEL) and a portable emissions measurement system (PEMS) to support validation of the engine “Not To Exceed” (NTE) emissions design and to evaluate the accuracy of PEMS. Three different brake specific emissions calculation equations (methods) were used as part of this research, with method one directly using engine speed and torque, and methods two and three including ECM fuel consumption and carbon balance fuel consumption. The brake specific NOx emissions for the particular PEMS unit utilized in this program were consistently higher than those for the MEL. The brake specific (bs) NOx NTE deltas were +0.63±0.31 g/kW-h (0.47±0.23 g/hp-h), +0.55±0.17 g/kW-h (0.41±0.13 g/hp-h), and +0.54±0.17g/kW-h (0.40±0.13g/hp-h) for methods one, two, and three respectively.
Technical Paper

Hydrocarbon (HC) Reduction of Exhaust Gases from a Homogeneous Charge Compression Ignition (HCCI) Engine Using Different Catalytic Mesh-Coatings

2000-06-19
2000-01-1847
A FeCrAlloy mesh-type catalyst has been used to reduce hydrocarbons (HC) and carbon monoxide (CO) emissions from a 4-stroke HCCI engine. Significant for the HCCI engine is a high compression ratio and lean mixtures, which leads to a high efficiency, low combustion temperatures and thereby low NOx emissions, <5 pmm, but also low exhaust temperatures, around 300°C. It becomes critical to: 1. Ensure that the HCCI-combustion generates as low HC emissions as possible, this can be done by very precise control of engine inlet conditions and, if possible, compression ratio. 2. Ensure that the exhaust temperature is high enough, without loosing efficiency or producing NOx; in order to get an oxidizing catalyst to work. 3. Select proper catalyst material for the catalyst so that the exhaust temperature can be as low as possible.
Technical Paper

Cylinder-to-Cylinder and Cycle-to-Cycle Variations at HCCI Operation With Trapped Residuals

2005-04-11
2005-01-0130
A naturally aspirated in-line six-cylinder 2.9-litre Volvo engine is operated in Homogeneous Charge Compression Ignition (HCCI) mode, using camshafts with low lift and short duration generating negative valve overlap. Standard port fuel injection is used and pistons and cylinder head are unchanged from the automotive application. HCCI through negative valve overlap is recognized as one of the possible implementation strategies of HCCI closest to production. It is important to gain knowledge of the constraints and limits on the possible operating region. In this work, the emphasis is on investigating how cycle-to-cycle and cylinder-to-cylinder deviations limit the operating region, how these effects change in different parts of the operating region and how they can be controlled. At low load the cycle-to-cycle phenomena cause periodic behavior in combustion timing; together with cylinder deviations this is found responsible for decreasing the operating regime.
Technical Paper

Application of Catalytic Converters to the Caterpillar 785 Off-Highway Truck

1993-04-01
931183
Catalytic converters have been developed to reduce diesel engine emissions to aid in meeting the 1994 EPA on-highway standards for heavy duty (above 8,500 pound gross vehicle weight) trucks. As converters are made available for on-highway applications, questions inevitably arise as to their applicability to larger off-highway equipment. This paper covers the application of catalytic converters to a Caterpillar 785 off-highway truck operating in a diamond mine in Siberia. Targeted emissions for this application were unburned hydrocarbons (HC) (especially aldehydes), and carbon monoxide (CO). Experience from the on-highway converter development indicated oxidation catalysts could reduce these emissions. This paper addresses the development and selection of a catalytic converter for the 785 truck. Tradeoffs of vehicle modifications vs. catalytic converter performance and design are discussed.
Technical Paper

A Multi-Zone Model for Prediction of HCCI Combustion and Emissions

2000-03-06
2000-01-0327
Homogeneous Charge Compression Ignition (HCCI) combustion is a process dominated by chemical kinetics of the fuel-air mixture. The hottest part of the mixture ignites first, and compresses the rest of the charge, which then ignites after a short time lag. Crevices and boundary layers generally remain too cold to react, and result in substantial hydrocarbon and carbon monoxide emissions. Turbulence has little effect on HCCI combustion, and may be most important as a factor in determining temperature gradients and boundary layer thickness inside the cylinder. The importance of thermal gradients inside the cylinder makes it necessary to use an integrated fluid mechanics-chemical kinetics code for accurate predictions of HCCI combustion. However, the use of a fluid mechanics code with detailed chemical kinetics is too computationally intensive for today's computers.
X