Refine Your Search

Topic

Search Results

Journal Article

Transient, Three Dimensional CFD Model of the Complete Engine Lubrication System

2016-04-05
2016-01-1091
This paper reports on a comprehensive, crank-angle transient, three dimensional, computational fluid dynamics (CFD) model of the complete lubrication system of a multi-cylinder engine using the CFD software Simerics-Sys / PumpLinx. This work represents an advance in system-level modeling of the engine lubrication system over the current state of the art of one-dimensional models. The model was applied to a 16 cylinder, reciprocating internal combustion engine lubrication system. The computational domain includes the positive displacement gear pump, the pressure regulation valve, bearings, piston pins, piston cooling jets, the oil cooler, the oil filter etc… The motion of the regulation valve was predicted by strongly coupling a rigorous force balance on the valve to the flow.
Technical Paper

The Influence of Variable Fuel Properties in High-Pressure Diesel Injectors

2009-04-20
2009-01-0832
High pressurization of Diesel fuel in modern common-rail injectors, in addition to its effect on spray atomization, can result to increase of fuel density and viscosity in comparison to atmospheric conditions; moreover, due to the sharp de-pressurization experienced by the fuel at the inlet of the injection holes significant gradients of the above properties are established. Consequently, the characteristics of cavitation taking place at the entrance to the injection holes are affected. The present study quantifies the role of these effects in automotive Diesel injectors operating at pressures in excess of 1500 bar through use of a cavitation CFD model. The flow solver is accordingly modified to account for such effects during the solution of the conservation equations. Two different injector designs have been considered, both based on the same sac-type nozzle body; one with sharp-inlet cylindrical holes and one with tapered holes with inlet rounding.
Technical Paper

Structure of high-pressure diesel sprays

2001-09-23
2001-24-0009
A comprehensive set of computational and experimental results for high- pressure diesel sprays are presented and discussed. The test cases investigated include injection of diesel into air under both atmospheric and high pressure/temperature chamber conditions, injection against pressurized and cross-flowing CF6 simulating respectively the density and flow conditions of a diesel engine at the time of injection, as well as injection into the piston bowl of both research and production turbocharged high-speed DI diesel engines. A variety of high-pressure injection systems and injector nozzles have been used including mechanical and electronic high-pressure pumps as well as common-rail systems connected to nozzles incorporating a varying number of holes with diameters ranging from conventional to micro-size.
Technical Paper

Sound Transmission Through Primary Bulb Rubber Sealing Systems

1997-05-20
971903
Structural sound transmission through primary bulb (PB) sealing systems was investigated. A two-degrees-of-freedom analytical model was developed to predict the sound transmission characteristics of a PB seal assembly. Detailed sound transmission measurements were made for two different random excitations: acoustic and aerodynamic. A reverberation room method was first used, whereby a seal sample installed within a test fixture was excited by a diffuse sound field. A quiet flow facility was then used to create aerodynamic pressure fluctuations which acted as the excitation. The space-averaged input pressure within the pseudo door gap cavity and the sound pressure transmitted on the quiescent side of the seal were obtained in each case for different cavity dimensions, seal compression, and seal designs. The sound transmission predictions obtained from the lumped element model were found to be in reasonable agreement with measured values.
Technical Paper

Recent Advancements in I.C. Engine Robust Speed Controllers

1997-04-01
971568
Presented in this paper is a nonlinear modeling and a controller design methodology for engine control. For illustrative purposes, the methodology is applied to the idle speed of a Ford 4.6L-2 valve V-8 fuel injected engine. The nonlinear model of the engine is based on a Hammerstein type model which is identified through input-output data without a priori knowledge of the engine dynamics. The nonlinear model is subsequently used in a frequency domain controller design methodology to achieve the performance goal of maintaining the engine idle speed within a prespecified asymmetric output tolerance despite external torque disturbances. An experimental verification of the proposed control law is included.
Technical Paper

Pressure Fluctuations in a Flow-Excited Door Gap Cavity Model

1997-05-20
971923
The flow-induced pressure fluctuations in a door gap cavity model were investigated experimentally using a quiet wind tunnel facility. The cavity cross-section dimensions were typical of road vehicle door cavities, but the span was only 25 cm. One cavity wall included a primary bulb rubber seal. A microphone array was used to measure the cavity pressure field over a range of flow velocities and cavity configurations. It was found that the primary excitation mechanism was an “edge tone” phenomenon. Cavity resonance caused amplification around discrete frequencies, but did not cause the flow disturbances to lock-on. Possible fluid-elastic coupling related to the presence of a compliant wall was not significant. A linear spectral decomposition method was then used to characterize the cavity pressure in the frequency domain, as the product of a source spectral distribution function and an acoustic frequency response function.
Technical Paper

Optimization of a Hydraulic Valve Design Using CFD Analysis

2005-11-01
2005-01-3633
The design of a pressure compensated hydraulic valve is optimized using CFD analysis. The valve is used in a hydraulic system to control implement movement. High flow rates through the valve resulted in unacceptably high pressure drops, leading to an effort to optimize the valve design. Redesign of the valve had to be achieved under the constraint of minimal manufacturing cost. The flow path of hydraulic oil through the valve, the spool design, and various components of the valve that caused the high pressure drops were targeted in this analysis. A commercially available CFD package was used for the 3D analysis. The hydraulic oil flow was assumed to be turbulent, isothermal and incompressible. The steady-state results were validated by comparison with experimental data.
Technical Paper

Nozzle Hole Film Formation and its Link to Spray Characteristics in Swirl-Pressure Atomizers for Direct Injection Gasoline Engines

2002-03-04
2002-01-1136
The numerical methodology used to predict the flow inside pressure-swirl atomizers used with gasoline direct injection engines and the subsequent spray development is presented. Validation of the two-phase CFD models used takes place against film thickness measurements obtained from high resolution CCD-based images taken inside the discharge hole of a pressure swirl atomizer modified to incorporate a transparent hole extension. The transient evolution of the film thickness and its mean axial and swirl velocity components as it emerges from the nozzle hole is then used as input to a spray CFD model predicting the development of both non-evaporating and evaporating sprays under a variety of back pressure and temperature conditions. Model predictions are compared with phase Doppler anemometry measurements of the temporal and spatial variation of the droplet size and velocity as well as CCD spray images.
Technical Paper

Nozzle Effect on High Pressure Diesel Injection

1995-02-01
950083
Studies of transient diesel spray characteristics at high injection pressures were conducted in a constant volume chamber by utilizing a high speed photography and light extinction optical diagnostic technique. Two different types of nozzle hole entrances were investigated: a sharp-edged and a round-edged nozzle. The experimental results show that for the same injection delivery, the sharp-edged inlet injector needed a higher injection pressure to overcome the higher friction loss, but it produced longer spray tip penetration length, larger spray angle, smaller droplet sizes, and also lower particulate emission from a parallel engine test. For the round-edged and smooth edged tips at the same injection pressure, the sharp-edged inlet tip took a longer injection duration to deliver a fixed mass of fuel and produced larger overall average Sauter Mean Diameter (SMD) droplets.
Technical Paper

Nonlinear Modeling and Control of I.C. Engine Idle Speed

1997-02-24
970512
Presented in this paper is the nonlinear modeling and control of the idle speed of a Ford 4.6L-2 valve V-8 fuel injected engine. The nonlinear model of the engine is based on a Hammerstein type model which is identified through input-output data without a priori knowledge of the engine dynamics. The nonlinear model is used in a frequency domain controller design methodology to achieve the performance goal of maintaining the engine idle speed within a prespecified asymmetric output tolerance despite external torque disturbances. An experimental verification of the nonlinear controller is included.
Technical Paper

Machinability of As-Compacted P/M Parts: Effect of Material Chemistry

1998-02-23
980635
Since the advent of P/M technology as a near net shape production process, millions of mechanical components of various shapes and sizes have been produced. Although P/M continues to be one of the fast growing shaping processes, it suffers from the inability to produce intricate geometry's such as internal tapers, threads or recesses perpendicular to pressing direction. In such cases application of machining as a secondary forming operation becomes the preferred alternative. However, machining of P/M parts due to their inherent porosity is known to decrease tool life and increase tool chatter and vibration. Consequently, several attempts have been made to improve the machinability of P/M materials by either addition of machinability enhancing elements such as sulfur, calcium, tellurium, selenium, etc., or by resin impregnation of P/M parts.
Technical Paper

Laboratory Method for Evaluating the Sound Transmission Characteristics of Primary Bulb Body Seals

1996-02-01
960193
A laboratory method was developed to evaluate the sound transmission characteristics of road vehicle body seals. Primary bulb seal samples were mounted in a fixture which approximated the geometry of a typical door-gap cavity. The seal fixture was integrated with a rigid panel into the floor of a quiet, low-speed, closed test-section wind tunnel. Flow-excited pressure fluctuations in the door-gap cavity were induced by the air stream instead of by sound waves in a quiescent environment as in standard transmission loss measurements. A soundproof anechoic enclosure located underneath the test-section floor isolated the sound receiver. The sound level reduction between the cavity pressure and the sound pressure into the enclosure, a quantity directly related to the sound transmission loss (TL) in this case, was measured accurately between the 1250 and 5000 Hz one-third octave bands.
Technical Paper

LES Predictions of the Vortical Flow Structures in Diesel Injector Nozzles

2009-04-20
2009-01-0833
Vortex flow realized inside the sac volume and the injection holes of automotive and heavy duty injectors plays an important role in the formation and development of cavitation and the near-nozzle structure of the emerging fuel sprays. Large-scale vortical flow structures are mainly induced by the geometric details of the injector. Vortex flow may be also induced by eccentric needle opening as well as the manufacturing tolerances of locations critical to the nozzle geometry such as the hole entry shape. The present paper assesses the predictive capability of a Large Eddy Simulation model against LDV measurements of the flow velocity obtained inside a transparent nozzle replica. Model predictions are compared also with RANS model predictions obtained using the standard k-ε model.
Journal Article

Investigation of the Relative Performance of Vaned and Vaneless Mixed Flow Turbines for Medium and Heavy-Duty Diesel Engine Applications with Pulse Exhaust Systems

2021-04-06
2021-01-0644
This paper details results of a numerical and experimental investigation into the relative performance of vaned and vaneless mixed flow turbines for application to medium and heavy-duty diesel engines utilizing pulse exhaust systems. Previous investigations into the impact of nozzle vanes on turbine performance considered only open turbine housings, whereas a majority of medium and heavy-duty diesel engine applications are six-cylinder engines using pulse exhaust systems with divided turbines. The two turbine stages for this investigation were carefully designed to meet the constraints of engines with pulse exhaust systems and to control confounding factors that would undermine the vaned vs vaneless performance comparison. Detailed CFD analysis and turbine dynamometer test results confirm a significant efficiency advantage for the vaned turbine stage under both full and partial admission conditions.
Technical Paper

Interaction Mechanisms between Closely Spaced Sprays

2008-04-14
2008-01-0946
Past experiments have shown that numerous micro-hole sprays in close proximity produce drop sizes that are sensitive to the nozzle arrangement. Numerical studies have been performed to identify the interaction mechanisms between closely spaced sprays. It is shown that nozzle configurations can lower the drop-gas relative velocity and droplet Weber number, leading to reduced atomization intensity. However, the collisions involving droplets from neighboring sprays have a much greater effect on droplet size. Thus, neighboring sprays primarily interfere with each other through droplet collision.
Technical Paper

High Performance Biodegradable Fluid Requirements for Mobile Hydraulic Systems

1998-04-08
981518
Technical groups worldwide have been actively developing specifications and requirements for biodegradable hydraulic fluids for mobile applications. These groups have recognized that an industry-wide specification is necessary due to the increase in environmental awareness in the agriculture, construction, forestry, and mining industries, and to the increasing number of local regulations primarily throughout Europe. Caterpillar has responded to this need by publishing a requirement, Caterpillar BF-1, that may be used by Caterpillar dealers, customers, and industry to help select high-performance biodegradable hydraulic fluids. This requirement was written with the input of several organizations that are known to be involved with the development of similar types of specifications and requirements.
Technical Paper

Electronic Control Module Network and Data Link Development and Validation using Hardware in the Loop Systems

2009-10-06
2009-01-2840
Increasingly, the exchanges of data in complex ECM (Electronic Control Module) systems rely on multiple communication networks across various physical and network layers. This has greatly increased system flexibility and provided an excellent medium to create well-defined exchangeable interfaces between components; however this added flexibility comes with increased network complexity. A system-level approach allows for the optimization of data exchange and network configuration as well as the development of a comprehensive network failure strategy. Many current ECM systems utilize complex multi-network communication strategies to exchange and control data to components. Recently, Caterpillar implemented an HIL (Hardware-In-the-Loop) test system that provides an approach for developing and testing a comprehensive ECM network strategy.
Technical Paper

Effects of Injection Pressure and Nozzle Geometry on Spray SMD and D.I. Emissions

1995-10-01
952360
A study was performed to correlate the Sauter Mean Diameter (SMD), NOx and particulate emissions of a direct injection diesel engine with various injection pressures and different nozzle geometry. The spray experiments and engine emission tests were conducted in parallel using the same fuel injection system and same operating conditions. With high speed photography and digital image analysis, a light extinction technique was used to obtain the spray characteristics which included spray tip penetration length, spray angle, and overall average SMD for the entire spray. The NOx and particulate emissions were acquired by running the tests on a fully instrumented Caterpillar 3406 heavy duty engine. Experimental results showed that for higher injection pressures, a smaller SMD was observed, i.e. a finer spray was obtained. For this case, a higher NOx and lower particulate resulted.
Journal Article

Early Direct-Injection, Low-Temperature Combustion of Diesel Fuel in an Optical Engine Utilizing a 15-Hole, Dual-Row, Narrow-Included-Angle Nozzle

2008-10-06
2008-01-2400
Low-temperature combustion of diesel fuel was studied in a heavy-duty, single-cylinder, optical engine employing a 15-hole, dual-row, narrow-included-angle nozzle (10 holes × 70° and 5 holes × 35°) with 103-μm-diameter orifices. This nozzle configuration provided the spray targeting necessary to contain the direct-injected diesel fuel within the piston bowl for injection timings as early as 70° before top dead center. Spray-visualization movies, acquired using a high-speed camera, show that impingement of liquid fuel on the piston surface can result when the in-cylinder temperature and density at the time of injection are sufficiently low. Seven single- and two-parameter sweeps around a 4.82-bar gross indicated mean effective pressure load point were performed to map the sensitivity of the combustion and emissions to variations in injection timing, injection pressure, equivalence ratio, simulated exhaust-gas recirculation, intake temperature, intake boost pressure, and load.
Technical Paper

Ducted Fuel Injection: Confirmed Re-entrainment Hypothesis

2024-04-09
2024-01-2885
Testing of ducted fuel injection (DFI) in a single-cylinder engine with production-like hardware previously showed that adding a duct structure increased soot emissions at the full load, rated speed operating point [1]. The authors hypothesized that the DFI flame, which travels faster than a conventional diesel combustion (CDC) flame, and has a shorter distance to travel, was being re-entrained into the on-going fuel injection around the lift-off length (LOL), thus reducing air entrainment into the on-going injection. The engine operating condition and the engine combustion chamber geometry were duplicated in a constant pressure vessel. The experimental setup used a 3D piston section combined with a glass fire deck allowing for a comparison between a CDC flame and a DFI flame via high-speed imaging. CH* imaging of the 3D piston profile view clearly confirmed the re-entrainment hypothesis presented in the previous engine work.
X