Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

The Use of the Wigner Distribution to Identify Wave-Types in Multi-Element Structures

1993-05-01
931286
In this paper it is shown that time-frequency analysis of a transient structural response may be used to identify the wave-types carrying significant energy through a multi-element structure. The identification of various wave-types is possible since each is characterized by its own dispersion relation, with the result that each wave-type may be associated with characteristic features in the time-frequency domain representation of a structural response. For multi-element structures, propagating energy can be converted from one wave-type to another at the junction of the elements. Consequently, for those structures, the characteristic features in the time-frequency domain consist of the superposition of features associated with propagation in each element. In the work described here, the Wigner Distribution has been used to obtain time-frequency domain representations of structural transient responses.
Technical Paper

Source Identification Using Acoustic Array Techniques

1995-05-01
951360
Acoustic array techniques are presented as alternatives to intensity measurements for source identification in automotive and industrial environments. With an understanding of the advantages and limitations described here for each of the available methods, a technique which is best suited to the application at hand may be selected. The basic theory of array procedures for Nearfield Acoustical Holography, temporal array techniques, and an Inverse Frequency Response Function technique is given. Implementation for various applications is discussed. Experimental evaluation is provided for tire noise identification.
Technical Paper

Numerical Simulation of Quenching Process at Caterpillar

1993-04-01
931172
Caterpillar uses heat treatment to enhance the properties of a significant number of parts. Traditional heat treat process optimization is both time consuming and expensive when done by empirical methods. This paper describes a computer simulation of the heat treatment process, developed by Caterpillar, based upon finite element analysis. This approach combines thermal, microstructural, and stress analysis to accurately model material transformation during quenching. Examples are presented to illustrate the program.
Technical Paper

Noise Source Identification in Thermal Systems Using Transient Spectral Analysis

1997-05-20
972036
A noise source identification technique for the analysis of thermal systems is presented. The proposed method uses transient spectral sound data to assist in determining the source of sound radiation by tracking the variation of the frequency of tones during transient thermal loading (i.e., thermal system warm-up). By considering the temperature dependence of the modulus of elasticity (Young's modulus) it can be shown that structure related tones will decrease in frequency during warm-up. Tones due to propagation of sound in many fluids (i.e., gases and water) will increase in frequency during warm-up due to the temperature dependence of the speed of sound. The analysis method is demonstrated by identifying the source of several noise tones for a pulse combustion furnace.
Technical Paper

Identification and Reduction of Booming Noise on a Motor Grader

2011-05-17
2011-01-1729
NVH is gaining importance in the quality perception of off-highway machines' performance and operator comfort. Booming noise, a low frequency NVH phenomenon, can be a significant sound issue in a motor grader when it is used under certain operating conditions that cause low frequency excitations to the machine. In order to increase operator comfort by decreasing the noise levels and noise annoyance, both simulation and testing techniques were leveraged to reduce the booming noise of a motor grader. Simultaneous structural/acoustics simulations and experimental modal tests were performed to evaluate this phenomenon. The simulation models were validated using test results and then used to evaluate solutions to this noise problem. Further field tests confirmed the validity of these recommended solutions.
Technical Paper

Development, Validation and ECM Embedment of a Physics-Based SCR on Filter Model

2016-09-27
2016-01-8075
SCR on Filter (SCRoF) is an efficient and compact NOX and PM reduction technology already used in series production for light-duty applications. The technology is now finding its way into the medium duty and heavy duty market. One of the key challenges for successful application is the robustness to real world variations. The solution to this challenge can be found by using model-based control algorithms, utilizing state estimation by physics-based catalyst models. This paper focuses on the development, validation and real time implementation of a physics-based control oriented SCRoF model. An overview of the developed model will be presented, together with a brief description of the model parameter identification and validation process using engine test bench measurement data. The model parameters are identified following a streamlined approach, focusing on decoupling the effects of deNOx and soot phenomena.
Technical Paper

Biomass Productivity and Sustainability of a Bioregenerative Life-Support System

1992-07-01
921359
Energy budgets for future Controlled Ecological Life-Support Systems (CELSS) must balance not only with respect to primary productivity (i.e., photosynthesis) vs. utilization steps (human maintenance plus preparative and recycling processes), but also with respect to necessary and desired nonlife-support activities of crews (e.g., exploration, research). Present objectives of the NSCORT program at Purdue University include identification of critical paths for biomass conversion to desired forms with energetics and rate-constant properties that are compatible with life-support sustainability within a CELSS. Physico-chemical recycling systems working in conjunction with bioregenerative ones likely will be required to keep time constants of critical processes within reasonable limits.
X