Refine Your Search

Topic

Author

Search Results

Technical Paper

Two-Color Imaging of In-Cylinder Soot Concentration and Temperature in a Heavy-Duty DI Diesel Engine with Comparison to Multidimensional Modeling for Single and Split Injections

1998-02-23
980524
Two-Color imaging optics were developed and used to observe soot emission processes in a modern heavy-duty diesel engine. The engine was equipped with a common rail, electronically-controlled, high-pressure fuel injection system that is capable of up to four injection pulses per engine cycle. The engine was instrumented with an endoscope system for optical access for the combustion visualization. Multidimensional combustion and soot modeling results were used for comparisons to enhance the understanding and interpretation of the experimental data. Good agreement between computed and measured cylinder pressures, heat release and soot and NOx emissions was achieved. In addition, good qualitative agreement was found between in-cylinder soot concentration (KL) and temperature fields obtained from the endoscope images and those obtained from the multidimensional modeling.
Journal Article

Transient, Three Dimensional CFD Model of the Complete Engine Lubrication System

2016-04-05
2016-01-1091
This paper reports on a comprehensive, crank-angle transient, three dimensional, computational fluid dynamics (CFD) model of the complete lubrication system of a multi-cylinder engine using the CFD software Simerics-Sys / PumpLinx. This work represents an advance in system-level modeling of the engine lubrication system over the current state of the art of one-dimensional models. The model was applied to a 16 cylinder, reciprocating internal combustion engine lubrication system. The computational domain includes the positive displacement gear pump, the pressure regulation valve, bearings, piston pins, piston cooling jets, the oil cooler, the oil filter etc… The motion of the regulation valve was predicted by strongly coupling a rigorous force balance on the valve to the flow.
Technical Paper

Toward Predictive Modeling of Diesel Engine Intake Flow, Combustion and Emissions

1994-10-01
941897
The development of analytic models of diesel engine flow, combustion and subprocesses is described. The models are intended for use as design tools by industry for the prediction of engine performance and emissions to help reduce engine development time and costs. Part of the research program includes performing engine experiments to provide validation data for the models. The experiments are performed on a single-cylinder version of the Caterpillar 3406 engine that is equipped with state-of-the-art high pressure electronic fuel injection and emissions instrumentation. In-cylinder gas velocity and gas temperature measurements have also been made to characterize the flows in the engine.
Technical Paper

Survey of Winter '93 Low Sulphur Diesel Fuels in the U.S.

1994-10-01
942013
Reports of disabling diesel engine seal failures which accompanied the introduction of low sulfur diesel fuel in October '93 prompted an in-depth survey of diesel fuel chemical and physical properties. The purpose of the survey was to anticipate other possible problems which might arise with the newly introduced low sulfur fuels. The survey will produce a database containing over 1000 number 2 diesel fuels from various parts of the US. About 75% of the samples tested were on-highway low sulfur diesel fuels. Samples analyzed were from the D-A Lubricant Company, Cummins customers failures (truck fleets of various sizes), and a number of retail fueling stations. Properties under investigation are % Sulfur, Cloud/Pour Points, Viscosity, API Gravity, TAN/TBN, Boiling Range, Aromatics content, Heat Content, Lubricity, and Peroxide number.
Technical Paper

Simulating the Lubrication System of a Diesel Engine

1977-02-01
770032
The entire engine lubrication system has been represented by a series-parallel network of flow passages and flow elements. The pressure distribution and flow rates in the network were computed according to pressure-flow characteristics of each element. The pressure-flow relationship for each network element was estimated using empirical pipe friction, expansion, and bend loss coefficients, as well as by using test rig results and a steady-state journal bearing model. The journal bearing model is basically that of the classical short bearing model with provision for heat transfer to the oil and the relative thermal growth of the journal and bearing system. When compared with diesel engine tests, the simulation predicted the pressure distribution throughout the engine and the flow rate through each branch within 10%.
Technical Paper

Progress in Diesel Engine Intake Flow and Combustion Modeling

1993-09-01
932458
The three-dimensional computer code, KIVA, is being modified to include state-of-the-art submodels for diesel engine flow and combustion. Improved and/or new submodels which have already been implemented are: wall heat transfer with unsteadiness and compressibility, laminar-turbulent characteristic time combustion with unburned HC and Zeldo'vich NOx, and spray/wall impingement with rebounding and sliding drops. Progress on the implementation of improved spray drop drag and drop breakup models, the formulation and testing of a multistep kinetics ignition model and preliminary soot modeling results are described. In addition, the use of a block structured version of KIVA to model the intake flow process is described. A grid generation scheme has been developed for modeling realistic (complex) engine geometries, and initial computations have been made of intake flow in the manifold and combustion chamber of a two-intake-valve engine.
Technical Paper

Progress Towards Diesel Combustion Modeling

1995-10-01
952429
Progress on the development and validation of a CFD model for diesel engine combustion and flow is described. A modified version of the KIVA code is used for the computations, with improved submodels for liquid breakup, drop distortion and drag, spray/wall impingement with rebounding, sliding and breaking-up drops, wall heat transfer with unsteadiness and compressibility, multistep kinetics ignition and laminar-turbulent characteristic time combustion models, Zeldovich NOx formation, and soot formation with Nagle Strickland-Constable oxidation. The code also considers piston-cylinder-liner crevice flows and allows computations of the intake flow process in the realistic engine geometry with two moving intake valves. Significant progress has been made using a modified RNG k-ε turbulence model, and a multicomponent fuel vaporization model and a flamelet combustion model have been implemented.
Technical Paper

Plastic Oil Rings for Diesel Engines: A Preliminary Evaluation

1996-02-01
960049
The ability of a piston oil ring to conform to liner distortions during engine operation is directly related to its radial stiffness. The ability to conform is also very important for controlling lubricant oil consumption and emissions. This paper describes the procedure utilized to investigate the technical feasibility of using flexible high performance engineering plastics to replace metal as base material for oil rings. Bench tests and engines were used to select and evaluate different types of plastics for wear resistance and structural integrity. Engine test results indicated no structural failures but wear levels were found to be unacceptably high for use in durable heavy duty diesel engines.
Technical Paper

Piston Bowl Geometry Effects on Combustion Development in a High-Speed Light-Duty Diesel Engine

2019-09-09
2019-24-0167
In this work we studied the effects of piston bowl design on combustion in a small-bore direct-injection diesel engine. Two bowl designs were compared: a conventional, omega-shaped bowl and a stepped-lip piston bowl. Experiments were carried out in the Sandia single-cylinder optical engine facility, with a medium-load, mild-boosted operating condition featuring a pilot+main injection strategy. CFD simulations were carried out with the FRESCO platform featuring full-geometric body-fitted mesh modeling of the engine and were validated against measured in-cylinder performance as well as soot natural luminosity images. Differences in combustion development were studied using the simulation results, and sensitivities to in-cylinder flow field (swirl ratio) and injection rate parameters were also analyzed.
Technical Paper

Optimization of Recompression Reaction for Low-Load Operation of Residual-Effected HCCI

2008-04-14
2008-01-0016
In-cylinder pre-processing (or recompression reaction) of direct-injected fuel during the negative valve overlap period of a retention-strategy HCCI engine is investigated for extension of the low-load limit of operation. Experimental studies of three variables (compression ratio, pilot injection timing, and pilot injection amount) were conducted in order to optimize the effects of recompression reaction by changing the sensible and chemical energy environment during recompression. The results from compression ratio variation show that there exist optimum values of equivalence ratio and extent of recompression reaction, which expand the low-load operating region. The pilot injection timing variation demonstrates good controllability of the extent of recompression reaction by effectively changing the in-cylinder residence time of the pilot-injected fuel.
Technical Paper

On the Calibration of Single-Shot Planar Laser Imaging Techniques in Engines

2002-03-04
2002-01-0748
The noise characteristics of four camera systems representative of those typically used for laser-imaging experiments (a back-illuminated slow-scan camera, a frame-straddling slow-scan camera, an intensified slow-scan camera and an intensified video-rate camera) were investigated, and the results are presented as a function of the signal level and illumination level. These results provide the maximum possible signal-to-noise ratio for laser-imaging experiments, and represent the limit of quantitative signal interpretation. A calibration strategy for engine data that limits the uncertainties associated with thermodynamic and optical correction was presented and applied to engine data acquired with two of the camera systems. When a rigorous analysis of the signal is performed it is seen that shot noise limits the quantitative interpretation of the data for most typical laser-imaging experiments, and obviates the use of single-pixel data.
Technical Paper

Near Wall Interaction in Spray Impingement

1996-02-01
960863
The hydrodynamic details of droplet-droplet and droplet-liquid film interactions on solid surfaces are believed to have a significant role in spray impingement phenomena, yet details of this interaction have not been clearly identified. The interaction among the droplets during impact affects their residence time on the surface, spreading, and droplet and liquid film stability. After impact, droplet interactions affect droplet collisions, coalescence and liquid splashing, This interaction affects secondary atomization and the droplet dispersion characteristics of the impingement process. In this study, details of droplet-droplet and droplet-liquid film interactions in solid surface impingement have been visualized using high speed photography. The effects of these interactions on secondary atomization and droplet dispersion have been quantified.
Technical Paper

Multidimensional Modeling of Engine Combustion Chamber Surface Temperatures

1997-05-01
971593
A two-dimensional transient Heat Conduction in Components code (HCC) was successfully set up and extensively used to calculate the temperature field existing in real engine combustion chambers. The Saul'yev method, an explicit, unconditionally stable finite difference method, was used in the code. Consideration of the gasket between the cylinder wall and head, and the air gap between the piston and liner were included in the code. The realistic piston bowl shape was modeled with a grid transformation and piston movement was considered. The HCC code was used to calculate the wall temperature of an Isuzu ceramic engine and a Caterpillar heavy-duty diesel engine. The code was combined with the KIVA-II code in an iterative loop, in which the KIVA-II code provided the instantaneous local heat flux on the combustion chamber surfaces, and the HCC code computed the time-averaged wall temperature distribution on the surfaces.
Technical Paper

Multidimensional Computation of Multicomponent Spray Vaporization and Combustion

1995-02-01
950285
The three-dimensional KIVA code has been used to study the effects of multicomponent fuel droplet vaporization on diesel engine performance under both standard and cold-starting conditions. The code has also been updated with state-of-the-art submodels including: a wave breakup atomization model, drop drag with drop distortion, spray/wall interaction with sliding, rebounding, and breaking-up drops, multistep kinetics ignition and laminar-turbulent characteristic time combustion, wall heat transfer with unsteadiness and compressibility, and a crevice flow model. The baseline computational results are compared with experimental data from a single-cylinder Caterpillar research engine equipped with a high-pressure, electronically-controlled fuel injection system. The effect of multicomponent fuel droplet vaporization is studied, with particular attention to the effects of the injection ambient temperatures.
Technical Paper

Modeling the Effects of Fuel Injection Characteristics on Diesel Engine Soot and NOx Emissions

1994-03-01
940523
The three-dimensional KIVA code has been used to study the effects of injection pressure and split injections on diesel engine performance and soot and NOx emissions. The code has been updated with state-of-the-art submodels including: a wave breakup atomization model, drop drag with drop distortion, spray/wall interaction with sliding, rebounding, and breaking-up drops, multistep kinetics ignition and laminar-turbulent characteristic time combustion, wall heat transfer with unsteadiness and compressibility, Zeldovich NOx formation, and soot formation with Nagle Strickland-Constable oxidation. The computational results are compared with experimental data from a single-cylinder Caterpillar research engine equipped with a high-pressure, electronically-controlled fuel injection system, a full-dilution tunnel for soot measurements, and gaseous emissions instrumentation.
Technical Paper

Modeling the Effect of Engine Speed on the Combustion Process and Emissions in a DI Diesel Engine

1996-10-01
962056
Previous studies have shown that air motion affects the combustion process and therefore also the emissions in a DI diesel engine. Experimental studies indicate that higher engine speeds enhance the turbulence and this improves air and fuel mixing. However, there are few studies that address fundamental combustion related factors and possible limitations associated with very high speed engine operation. In this study, operation over a large range of engine speeds was simulated by using a multi-dimensional computer code to study the effect of speed on emissions, engine power, engine and exhaust temperatures. The results indicate that at higher engine speeds fuel is consumed in a much shorter time period by the enhanced air and fuel mixing. The shorter combustion duration provides much less available time for soot and NOx formations. In addition, the enhanced air/fuel mixing decreases soot and NOx by reducing the extent of the fuel rich regions.
Technical Paper

Modeling Combustion in Compression Ignition Homogeneous Charge Engines

1992-02-01
920512
The combustion mechanism in a Compression Ignition Homogeneous Charge (CIHC) engine was studied. Previous experiments done on a four-stroke CIHC engine were modeled using the KIVA-II code with modifications to the combustion, heat transfer, and crevice flow submodels. A laminar and turbulence characteristic time combustion model that has been used for spark-ignited engine studies was extended to allow predictions of ignition. The rate of conversion from one chemical species to another is modeled using a characteristic time which is the sum of a laminar (high temperature) chemistry time, an ignition (low temperature) chemistry time, and a turbulence mixing time. The ignition characteristic time was modeled using data from elementary initiation reactions and has the Arrhenius form. It was found to be possible to match all engine test cases reasonably well with one set of combustion model constants.
Technical Paper

Methodology to Perform Conjugate Heat Transfer Modeling for a Piston on a Sector Geometry for Direct-Injection Internal Combustion Engine Applications

2019-04-02
2019-01-0210
The increase in computational power in recent times has led to multidimensional computational fluid dynamics (CFD) modeling tools being used extensively for optimizing the diesel engine piston design. However, it is still common practice in engine CFD modeling to use constant uniform boundary temperatures. This is either due to the difficulty in experimentally measuring the component temperatures or the lack of measurements when simulation is being used predictively. This assumption introduces uncertainty in heat flux predictions. Conjugate heat transfer (CHT) modeling is an approach used to predict the component temperatures by simultaneously modeling the heat transfer in the fluid and the solid phase. However, CHT simulations are computationally expensive as they require more than one engine cycle to be simulated to converge to a steady cycle-averaged component temperature.
Technical Paper

Mechanism of Soot and NOx Emission Reduction Using Multiple-injection in a Diesel Engine

1996-02-01
960633
Engine experiments have shown that with high-pressure multiple injections (two or more injection pulses per power cycle), the soot-NOx trade-off curves of a diesel engine can be shifted closer to the origin than those with the conventional single-pulse injections, reducing both soot and NOx emissions significantly. In order to understand the mechanism of emissions reduction, multidimensional computations were carried out for a heavy-duty diesel engine with multiple injections. Different injection schemes were considered, and the predicted cylinder pressure, heat release rate and soot and NOx emissions were compared with measured data. Excellent agreements between predictions and measurements were achieved after improvements in the models were made. The improvements include using a RNG k-ε turbulence model, adopting a new wall heat transfer model and introducing the nozzle discharge coefficient to account for the contraction of fuel jet at the nozzle exit.
Technical Paper

Measurement and Analysis of the Effect of Wall Temperature on Instantaneous Heat Flux

1986-03-01
860312
Measurements of instantaneous temperature were made at three locations on the cylinder head of a direct injection diesel engine. Changes in calculated instantaneous heat flux with changes in cylinder head surface temperature were assessed. The results were used in an assessment of various approaches to the description of instantaneous heat transfer incorporated in diesel cycle simulations. It was concluded that changes in the thermal boundary layer thickness throughout the cycle could account for some of the observed phenomena. A close correlation was seen between the heat transfer measured here and earlier published studies of measured boundary layer thickness. Some additional indications from the measurements point to a significant thermal capacitance of the boundary layer. Additional work is needed to further understand the potential ramifications of this effect.
X