Refine Your Search

Topic

Search Results

Journal Article

Visualization of Pre-Chamber Combustion and Main Chamber Jets with a Narrow Throat Pre-Chamber

2022-03-29
2022-01-0475
Pre-chamber combustion (PCC) has re-emerged in recent last years as a potential solution to help to decarbonize the transport sector with its improved engine efficiency as well as providing lower emissions. Research into the combustion process inside the pre-chamber is still a challenge due to the high pressure and temperatures, the geometrical restrictions, and the short combustion durations. Some fundamental studies in constant volume combustion chambers (CVCC) at low and medium working pressures have shown the complexity of the process and the influence of high pressures on the turbulence levels. In this study, the pre-chamber combustion process was investigated by combustion visualization in an optically-accessible pre-chamber under engine relevant conditions and linked with the jet emergence inside the main chamber. The pre-chamber geometry has a narrow-throat. The total nozzle area is distributed in two six-hole rows of nozzle holes.
Technical Paper

Testing and Evaluation of Ignition Improvers for Ethanol in a DI Diesel Engine

1995-10-01
952512
The ignition delay of ethanol with different nitrate and polyethylene glycol based ignition improvers was investigated in a single-cylinder DI Diesel engine. The nitrate-based improvers provided a shorter ignition delay than the polyethylene glycol improvers, but the results indicate that the efficiency of the polyethylene glycol improvers increases with the length of the molecular chains. Comparison with reference fuels gives a cetane number of approximately 44 for ethanol with 4% of the best nitrate-based improver versus 40 for ethanol with 7% polyethylene glycol improver. It is shown, that the random ignition delay for all the fuels has a normal distribution, and that the reference fuel of every measurement series has a constant expected ignition delay. Ignition delay measurements in a constant-volume combustion vessel failed to produce the same trends as in the engine for the ethanol fuels.
Technical Paper

Simulation of a Two-Stroke Free Piston Engine

2004-06-08
2004-01-1871
The free piston internal combustion engine used in conjunction with a linear alternator offers an interesting choice for use in hybrid vehicles. The linear motion of the pistons is directly converted to electricity by the alternator, and the result is a compact and efficient energy converter that has only one moving part. The movement of the pistons is not prescribed by a crank mechanism, but is the result of the equilibrium of forces acting on the pistons, and the engine will act like a mass-spring system. This feature is one of the most prominent advantages of the FPE (Free Piston Engine), as the lack of mechanical linkage gives means of varying the compression ratio in simple manners, without changing the hardware of the engine. By varying the compression ratio, it is also it possible to run on a multitude of different fuels and to use HCCI (Homogeneous Charge Compression Ignition) combustion.
Technical Paper

Performance of a Heavy Duty DME Engine - the Influence of Nozzle Parameters on Combustion and Spray Development

2009-04-20
2009-01-0841
DME was tested in a heavy duty diesel engine and in an optically accessible high-temperature and pressure spray chamber in order to investigate and understand the effect of nozzle parameters on emissions, combustion and fuel spray concentration. The engine study clearly showed that smaller nozzle orifices were advantageous from combustion, efficiency and emissions considerations. Heat release analysis and fuel concentration images indicate that smaller orifices result in higher mixing rate between fuel and air due to reductions in the turbulence length scale, which reduce both the magnitude of fuel-rich regions and the steepness of fuel gradients in the spray, which enable more fuel to burn and thereby shorten the combustion duration.
Technical Paper

Performance of a Heavy Duty DME Engine - The Influence of Methanol and Water in the Fuel

2008-04-14
2008-01-1391
In the study reported here the combustion and emission characteristics of a heavy duty six-cylinder diesel engine fuelled with dimethyl ether (DME) of chemical grade and DME with small and varying amounts of methanol and/or water were experimentally investigated. In addition, the size distribution of emitted particles and selected unregulated emissions were sampled. Methanol and water additions had a very limited effect on emissions, but affected the combustion processes in a way that accentuated the premixed combustion and thus caused more energy to be released early in the cycle. At high load, however, the effect was reversed, due to the lack of distinct premixed combustion. The results confirm that DME combustion does not generate any accumulation mode particles. The particles that are detected are smaller than the soot size range and do not occur in greater numbers than those from a diesel engine in the corresponding size range.
Technical Paper

Numerical Evaluation of Dual Oxygenated Fuel Setup for DI Diesel Application

1997-05-01
971596
Methanol, MeOH, is one of the most attractive alternative fuels for internal combustion engines. In diesel applications, methanol's poor ignition properties necessitate the use of expensive additives for ignition improvement [1]. Dimethyl ether, DME, as a combustion improver for methanol, was recently evaluated in [2]. This study is directed towards a better understanding of the auto-ignition and combustion of a blend fuel composition consisting of liquid methanol and gaseous dimethyl ether aspirated with the combustion air by using the results of numerical simulation. The numerical model was based on the computer code KIVA-3. The computational results show that the use of DME as an ignition improver is only reasonable for gas temperatures below 900 K. At typical diesel conditions, an amount of DME in a quantity less than 10-15 volumetric percent of oxygen content in the combustion volume is sufficient for ignition improvement.
Technical Paper

Numerical Analysis of NOx Formation Trends in Biodiesel Combustion using Dynamic ϕ-T Parametric Maps

2011-08-30
2011-01-1929
The use of biodiesel in conventional diesel engines results in increased NOx emissions; this presents a barrier to the widespread use of biodiesel. The origins of this phenomenon were investigated using the CFD KIVA3V code, which was modified to account for the physical properties of biodiesel and to incorporate semi-detailed mechanisms for its combustion and the formation of emissions. Parametric φ-T maps and 3D engine simulations were used to assess the impact of using oxygen-containing fuels on the rate of NO formation. It was found that using oxygen-containing fuels allows more O₂ molecules to present in the engine cylinder during the combustion of biodiesel, and this may be the cause of the observed increase in NO emissions.
Technical Paper

Neat Dimethyl Ether: Is It Really Diesel Fuel of Promise?

1998-10-19
982537
The CFD model, based on the LANL KIVA-3 computer code, modified to account for the multi-step dimethyl ether, DME/air, oxidation chemistry, was developed and used to study the neat DME combustion dynamics in a constant volume at Diesel-like conditions and in the Volvo AH10A245DI Diesel engine. Constant volume simulations confirm high ignition quality of neat DME in air. The results of engine modeling illustrate that the injection schedule used for Diesel fuel is not optimal for DME. Surprisingly, the positive gain and peak pressure levels comparable with those for Diesel fuel were obtained using an early (∼ -20 ATDC) injection through a nozzle of a larger diameter at reduced injection pressures and velocities (∼150m/s) preventing too rapid spray atomization. At these conditions, combustion heat release has a specific two-stage character with a peak value placed behind the TDC.
Technical Paper

Modelling of Gasoline and Ethanol Hollow-Cone Sprays Using OpenFOAM

2011-08-30
2011-01-1896
Over the past few years, an open-source code called OpenFOAM has been becoming a promising CFD tool for multi-dimensional numerical simulations of internal combustion engines. The primary goal of the present study is to assess the feasibility of the code for computations of hollow-cone sprays discharged by an outward-opening pintle-type injector by simulating the experiments performed recently by Hemdal et al., (SAE 2009-01-1496) with gasoline and ethanol sprays under the following conditions: air temperature Tair = 295 or 350 K, air pressure pair = 6 bar, fuel temperature Tfuel = 243, or 295, or 320 K, and fuel injection pressure pinj = 50, or 125, or 200 bar. To simulate the experiments, a pintle injector model and the physical properties of gasoline were implemented in OpenFOAM. The flow field calculated using the pintle injector model is more realistic than that yielded by the default unit injector model normally used in OpenFOAM.
Technical Paper

Influence of Ethanol Content in Gasoline on Speciated Emissions from a Direct Injection Stratified Charge SI Engine

2001-03-05
2001-01-1206
The influence of ethanol content in gasoline on speciated emissions from a direct injection stratified charge (DISC) SI engine is assessed. The engine tested is a commercial DISC one that has a wall guided combustion system. The emissions were analyzed using both Fourier transform infrared (FTIR) spectroscopy and conventional emission measurement equipment. Seven fuels were compared in the study. The first range of fuels was of alkylate type, designed to have 0, 5, 10 and 15 % ethanol in gasoline without changing the evaporation curve. European emissions certification fuel was tested, with and without 5 % ethanol, and finally a specially blended high volatility gasoline was also tested. The measurements were conducted at part-load, where the combustion is in stratified mode. The engine used a series engine control unit (ECU) that regulated the fuel injection, ignition and exhaust gas recirculation (EGR).
Technical Paper

Influence of Considering Non-Ideal Thermodynamics on Droplet Evaporation and Spray Formation (for Gasoline Direct Injection Engine Conditions) Using VSB2 Spray Model

2018-04-03
2018-01-0181
This work utilizes previously developed VSB2 (VSB2 Stochastic Blob and Bubble) multicomponent fuel spray model to study significance of using non-ideal thermodynamics for droplet evaporation under direct injection engine like operating conditions. Non-ideal thermodynamics is used to account for vapor-liquid equilibrium arising from evaporation of multicomponent fuel droplets. In specific, the evaporation of ethanol/iso-octane blend is studied in this work. Two compositions of the blend are tested, E-10 and E-85 respectively (the number denotes percentage of ethanol in blend). The VSB2 spray model is implemented into OpenFoam CFD code which is used to study evaporation of the blend in constant volume combustion vessel. Liquid and vapor penetration lengths for the E-10 case are calculated and compared with the experiment. The simulation results show reasonable agreement with the experiment. Simulation is performed with two methods- ideal and non-ideal thermodynamics respectively.
Technical Paper

High Pressure Ethanol Injection under Diesel-Like Conditions

2017-03-28
2017-01-0857
Laws concerning to emissions from heavy duty (HD) internal combustion engines are becoming increasingly stringent. New engine technologies are therefore needed to satisfy these new legal requirements and reduce fossil fuel dependency. One way to achieve both objectives is to partially replace fossil fuels with alternatives that are more sustainable with respect to emissions of greenhouse gas, particulates and NOx. As a first step towards the development of a direct injected dual fuel engine using diesel fuel and renewable alcohols such as methanol or ethanol, we have studied ethanol (E100) sprays generated with a standard high pressure diesel fuel injection system in a high pressure/temperature spray chamber with optical access. The experiments were performed at a gas density of ∼27kg/m3 at ∼550 °C and ∼60 bar, representing typical operating conditions for a HD engine at low loads.
Technical Paper

Evaporation of Gasoline-Like and Ethanol-Based Fuels in Hollow-Cone Sprays Investigated by Planar Laser-Induced Fluorescence and Mie Scattering

2011-08-30
2011-01-1889
The evaporation of different fuels and fuel components in hollow-cone sprays at conditions similar to those at stratified cold start has been investigated using a combination of planar laser-induced fluorescence (LIF) and Mie scattering. Ketones of different volatility were used as fluorescent tracers for different fuel components in gasoline-like model fuels and ethanol-based fuels. LIF and Mie images were compared to evaluate to what extent various fuel components had evaporated and obtained a spatial distribution different from that of the liquid drops, as a function of fuel temperature and time after start of injection. A selective and sequential evaporation of fuel components of different volatility was found.
Technical Paper

Effect of Renewable Fuel Blends on PN and SPN Emissions in a GDI Engine

2020-09-15
2020-01-2199
To characterize the effects of renewable fuels on particulate emissions from GDI engines, engine experiments were conducted using EN228-compliant gasoline fuel blends containing no oxygenates, 10% ethanol (EtOH), or 22% ethyl tert-butyl ether (ETBE). The experiments were conducted in a single cylinder GDI engine using a 6-hole fuel injector operated at 200 bar injection pressure. Both PN in raw exhaust and solid PN (SPN) were measured at two load points and various start of injection (SOI) timings. Raw PN and SPN results were classified into various size ranges, corresponding to current and future legislations. At early SOI timings, where particulate formation is dominated by diffusion flames on the piston due to liquid film, the oxygenated blends yielded dramatically higher PN and SPN emissions than reference gasoline because of fuel effects.
Technical Paper

Dual Fuel Methanol and Diesel Direct Injection HD Single Cylinder Engine Tests

2018-04-03
2018-01-0259
Laws concerning emissions from heavy duty (HD) internal combustion engines are becoming increasingly stringent. New engine technologies are needed to satisfy these new requirements and to reduce fossil fuel dependency. One way to achieve both objectives can be to partially replace fossil fuels with alternatives that are sustainable with respect to emissions of greenhouse gases, particulates and nitrogen oxides (NOx). A suitable candidate is methanol. The aim of the study presented here was to investigate the possible advantages of combusting methanol in a heavy duty Diesel engine. Those are, among others, lower particulate emissions and thereby bypassing the NOx-soot trade-off. Because of methanol’s poor auto-ignition properties, Diesel was used as an igniting sources and both fuels were separately direct injected. Therefore, two separate standard common rail Diesel injection systems were used together with a newly designed cylinder head and adapted injection nozzles.
Technical Paper

Considerations on Engine Design and Fuelling Technique Effects on Qualitative Combustion in Alcohol Diesel Engines

1998-10-19
982530
This paper depicts the main topics of the experimental investigation on alcohol engine development field, aiming at the engineering targets for the emission levels. The first part of this study was focused on engine design optimization for running on ethanol mixed with poly-ethylene glycol (PEG) as ignition improver. It was shown that some design changes in compression ratio, turbine casing, injector nozzle configuration and exhaust pressure governor (EPG) activation, lead to a better engine thermodynamics and its thermochemistry. The second objective of this study was the investigation of engine performance and emission levels, when the ignition improver diethyl ether (DEE) would be generated on board via catalytically dehydration of ethanol, and used directly as soluble mixture or separately fumigated.
Technical Paper

CI Methanol and Ethanol combustion using ignition improver

2019-12-19
2019-01-2232
To act on global warming, CO2 emissions must be reduced. This will require a reduction in the use of fossil fuels for transportation. Because of the large quantities of fossil fuels used in transportation, sources of renewable fuels other than biomass will have to be explored, such as electrofuels synthesized from CO2 using renewable electricity. Potential electrofuels include methanol and ethanol, which have shown promising results in SI engines. However, their low cetane numbers make these fuels unsuitable for CI engines because of their poor auto-ignition qualities. The main objective of this study was to evaluate the viability of using methanol and ethanol in CI engines at compression ratios of 16.7 and 20 with a pilot-main injection strategy in the PPC/CI regime. Single cylinder engine tests on a heavy duty engine were performed under medium load conditions (1262 rpm and 172 Nm).
Journal Article

Analysis of the Water Addition Efficiency on Knock Suppression for Different Octane Ratings

2020-04-14
2020-01-0551
Water injection can be applied to spark ignited gasoline engines to increase the Knock Limit Spark Advance and improve the thermal efficiency. The Knock Limit Spark Advance potential of 6 °CA to 11 °CA is shown by many research groups for EN228 gasoline fuel using experimental and simulation methods. The influence of water is multi-layered since it reduces the in-cylinder temperature by vaporization and higher heat capacity of the fresh gas, it changes the chemical equilibrium in the end gas and increases the ignition delay and decreases the laminar flame speed. The aim of this work is to extend the analysis of water addition to different octane ratings. The simulation method used for the analysis consists of a detailed reaction scheme for gasoline fuels, the Quasi-Dimensional Stochastic Reactor Model and the Detonation Diagram. The detailed reaction scheme is used to create the dual fuel laminar flame speed and combustion chemistry look-up tables.
Technical Paper

An Experimental Investigation of Fischer-Tropsch Fuels in a Light-Duty Diesel Engine

2007-01-23
2007-01-0030
Experiments were performed using a Light-Duty, single-cylinder, research engine in which the emissions, fuel consumption and combustion characteristics of two Fischer-Tropsch (F-T) Diesel fuels derived from natural gas and two conventional Diesel fuels (Swedish low sulfur Diesel and European EN 590 Diesel) were compared. Due to their low aromatic contents combustion with the F-T Diesel fuels resulted in lower soot emissions than combustion with the conventional Diesel fuels. The hydrocarbon emissions were also significantly lower with F-T fuel combustion. Moreover the F-T fuels tended to yield lower CO emissions than the conventional Diesel fuels. The low emissions from the F-T Diesel fuels, and the potential for producing such fuels from biomass, are powerful reason for future interest and research in this field.
Technical Paper

A Comparison of Drop-In Diesel Fuel Blends Containing Heavy Alcohols Considering Both Engine Properties and Global Warming Potentials

2016-10-17
2016-01-2254
Heavy alcohols can be mixed with fossil diesel to produce blended fuels that can be used in diesel engines. Alcohols can be obtained from fossil resources, but can also be produced more sustainably from renewable raw materials. The use of such biofuels can help to reduce greenhouse gas (GHG) emissions from the transport sector. This study examines four alcohol/diesel blends each containing one heavy alcohol: n-butanol, iso-butanol, 2-ethyl hexanol and n-octanol. All of the blends where prepared to function as drop-in fuels in existing engines with factory settings. To compensate for the alcohols′ low cetane numbers (CN), a third component with high CN was added to each blend, namely hydrotreated vegetable oil (HVO). The composition of each mixture was selected to give an overall CN equal to that of fossil diesel fuel.
X