Refine Your Search

Topic

Author

Search Results

Technical Paper

Wheel Drive Unit Lift Corrections in Automotive Wind Tunnels

2024-04-09
2024-01-2544
Correct simulations of rotating wheels are essential for accurate aerodynamic investigations of passenger vehicles. Therefore, modern automotive wind tunnels are equipped with five-belt moving ground systems with wheel drive units (WDUs) connected to the underfloor balance. The pressure distribution on the exposed areas of the WDU belts results in undesired lift forces being measured which must be considered to obtain accurate lift values for the vehicle. This work investigates the parasitic WDU lift for various configurations of a crossover SUV using numerical simulations that have been correlated to wind tunnel data. Several parameters were considered in the investigation, such as WDU size, WDU placement, tyre variants and vehicle configurations. The results show that the parasitic lift is more sensitive to the width than the length of the WDU. However, the belt length is also important to consider, especially if the wheel cannot be placed centred.
Technical Paper

Uncertainty Quantification of Flow Uniformity Measurements in a Slotted Wall Wind Tunnel

2019-04-02
2019-01-0656
The need for a more complete understanding of the flow behavior in aerodynamic wind tunnels has increased as they have become vital tools not only for vehicle development, but also for vehicle certification. One important aspect of the behavior is the empty test section flow, which in a conventional tunnel should be as uniform as possible. In order to assess the uniformity and ensure consistent behavior over time, accurate measurements need to be performed regularly. Furthermore, the uncertainties and errors of the measurements need to be minimized in order to resolve small non-uniformities. In this work, the quantification of the measurement uncertainties from the full measurement chain of the new flow uniformity measurement rig for the Volvo Cars aerodynamic wind tunnel is presented. The simulation based method used to account for flow interference of the probe mount is also discussed.
Technical Paper

Transient Measurements of Discharge Coefficients of Diesel Nozzles

2000-10-16
2000-01-2788
The discharge coefficient is an important functional parameter of an injector characterising the nozzle flow, in terms of cavitation and hydraulic flip, which subsequently play a crucial role in the spray formation and development. Thus it is important to have the possibility of measuring instantaneously the value of the discharge coefficient. The method proposed is based on the measurement of force developed during the impingement of the fuel jet on a normal target. In this study the method was verified experimentally and also the variation of a diesel nozzle discharge coefficient over the entire injection time was studied. The impingement results were in good agreement, when compared with the results from mass flow measurements both at high and low injection pressures. Strong variations of the discharge coefficient during the injector needle opening and closing periods were seen.
Technical Paper

The Structure of Cavitation and its Effect on the Spray Pattern in a Single-Hole Diesel Nozzle

2001-05-07
2001-01-2008
The structure and evolution of cavitation in a transparent scaled-up diesel nozzle having a hole perpendicular to the nozzle axis has been investigated using high-speed motion pictures, flash photography and stroboscopic visualization. Observations revealed that, at the inception stage, cavitation bubbles are dominantly seen in the vortices at the boundary layer shear flow and outside the separation zone. Cavitation bubbles grow intensively in the shear layer and develop into cloud-like coherent structures when viewed from the side of the nozzle. Shedding of the coherent cloud cavitation was observed. When the flow was increased further the cloud like cavitation bubbles developed into a large-scale coherent structure extending downstream of the hole. Under this condition the cavitation starts as a mainly glassy sheet at the entrance of the hole. Until this stage the spray appeared to be symmetric.
Technical Paper

The Role of Aerodynamics in the 1955 Le Mans Crash

2008-12-02
2008-01-2996
In the 1955 Le Mans race the worst crash in motor racing history occurred and this accident would change the face of motor racing for decades. After the crash numerous investigations on the disaster were performed, and fifty years after some interesting books were launched on the subject. However, a number of key questions remain unsolved; and one open area is the influence of aerodynamics on the scenario, since the Mercedes-Benz 300 SLR involved in the crash was equipped with an air-brake and its influence on the accident is basically unknown. This work may be considered as a first attempt to establish CFD as a tool to aid in resolving aerodynamic aspects in motor sport accidents and in the present paper, CFD has been used to investigate the aerodynamics and estimate the drag and lift coefficients of the Mercedes-Benz 300 SLR used in the Le Mans race of 1955.
Technical Paper

The Influence of PRF and Commercial Fuels with High Octane Number on the Auto-ignition Timing of an Engine Operated in HCCI Combustion Mode with Negative Valve Overlap

2004-06-08
2004-01-1967
A single-cylinder engine was operated in HCCI combustion mode with different kinds of commercial fuels. The HCCI combustion was generated by creating a negative valve overlap (early exhaust valve closing combined with late intake valve opening) thus trapping a large amount of residuals (∼ 55%). Fifteen different fuels with high octane numbers were tested six of which were primary reference fuels (PRF's) and nine were commercial fuels or reference fuels. The engine was operated at constant operational parameters (speed/load, valve timing and equivalence ratio, intake air temperature, compression ratio, etc.) changing only the fuel type while the engine was running. Changing the fuel affected the auto-ignition timing, represented by the 50% mass fraction burned location (CA50). However these changes were not consistent with the classical RON and MON numbers, which are measures of the knock resistance of the fuel. Indeed, no correlation was found between CA50 and the RON or MON numbers.
Technical Paper

The Effect of Elliptical Nozzle Holes on Combustion and Emission Formation in a Heavy Duty Diesel Engine

2000-03-06
2000-01-1251
A serie of experiments were carried out to compare the combustion and emissions characteristics of a diesel engine using non-circular (elliptical) and circular shaped fuel injector nozzle holes. Elliptic nozzle holes have the potential to increase air entrainment into the spray, which could lead to decreased emissions from diesel combustion. Previous work [6,7] has shown some interesting results in a passenger car diesel engine and also in a single cylinder engine with optical access. The idea is based on results from investigations of gas jets, where the air entrainment for elliptical jets was increased substantially compared to circular jets. The present series of experiments were carried out to further investigate these effects. The non-circular holes, which were made with an aspect ratio of close to 2:1, have a similar flow rate as the conventional circular holes. Two different angles of the elliptical major axis to the injector centerline were used.
Technical Paper

Temperature Oscillations in the Wall of a Cooled Multi Pulsejet Propeller for Aeronautic Propulsion

2016-09-20
2016-01-1998
Environmental and economic issues related to the aeronautic transport, with particular reference to the high-speed one are opening new perspectives to pulsejets and derived pulse detonation engines. Their importance relates to high thrust to weight ratio and low cost of manufacturing with very low energy efficiency. This papers presents a preliminary evaluation in the direction of a new family of pulsejets which can be coupled with both an air compression system which is currently in pre-patenting study and a more efficient and enduring valve systems with respect to today ones. This new pulsejet has bee specifically studied to reach three objectives: a better thermodynamic efficiency, a substantial reduction of vibrations by a multi-chamber cooled architecture, a much longer operative life by more affordable valves. Another objective of this research connects directly to the possibility of feeding the pulsejet with hydrogen.
Technical Paper

Surface Flow Visualization on a Full-Scale Passenger Car with Quantitative Tuft Image Processing

2016-04-05
2016-01-1582
Flow visualization techniques are widely used in aerodynamics to investigate the surface trace pattern. In this experimental investigation, the surface flow pattern over the rear end of a full-scale passenger car is studied using tufts. The movement of the tufts is recorded with a DSLR still camera, which continuously takes pictures. A novel and efficient tuft image processing algorithm has been developed to extract the tuft orientations in each image. This allows the extraction of the mean tuft angle and other such statistics. From the extracted tuft angles, streamline plots are created to identify points of interest, such as saddle points as well as separation and reattachment lines. Furthermore, the information about the tuft orientation in each time step allows studying steady and unsteady flow phenomena. Hence, the tuft image processing algorithm provides more detailed information about the surface flow than the traditional tuft method.
Technical Paper

Spray Characterization of Gasoline Direct Injection Sprays Under Fuel Injection Pressures up to 150 MPa with Different Nozzle Geometries

2019-01-15
2019-01-0063
Maximum fuel injection pressures for GDI engines is expected to increase due to positive effects on emissions and engine-efficiency. Current GDI injectors have maximum operating pressures of 35 MPa, but higher injection pressures have yielded promising reductions in particle number (PN) and improved combustion stability. However, the mechanisms responsible for these effects are poorly understood, and there have been few studies on fuel sprays formed at high injection pressures. This paper summarizes experimental studies on the properties of sprays formed at high injection pressures. The results of these experiments can be used as inputs for CFD simulations and studies on combustion behavior, emissions formation, and combustion system design. The experiments were conducted using an injection rate meter and optical methods in a constant volume spray chamber. Injection rate measurements were performed to determine the injectors’ flow characteristics.
Technical Paper

Soot Evolution in Multiple Injection Diesel Flames

2008-10-06
2008-01-2470
In order to meet future emission regulations, various new combustion concepts are being developed, several of which incorporate advanced diesel injection strategies, e.g. multiple injections, offering attractive potential benefits. In this study the effects of split injections on soot evolution in diesel flames were investigated in a series of flame experiments performed using a high pressure, high temperature (HP/HT) spray chamber and laser-induced incandescence apparatus to measure soot volume fractions. The focus was on split injections with varied dwell times preceded by a short pilot. The results, which were analyzed and compared to results from engine tests, show that net soot production can be decreased by applying an appropriate split injection strategy.
Technical Paper

Simplifications Applied to Simulation of Turbulence Induced by a Side View Mirror of a Full-Scale Truck Using DES

2018-04-03
2018-01-0708
In this paper, the turbulent flow induced by a production side-view mirror assembled on a full-scale production truck is simulated using a compressible k-ω SST detached eddy simulation (DES) approach -- the improved delayed DES (IDDES). The truck configuration consists of a compartment and a trailer. Due to the large size and geometric complexity of the configuration, some simplifications are applied to the simulation. A purpose of this work is to investigate whether the simplifications are suitable to obtain the reasonable properties of the flow near the side-view mirror. Another objective is to study the aerodynamic performances of the mirror. The configuration is simplified regarding two treatments. The first treatment is to retain the key exterior components of the truck body while removing the small gaps and structures. Furthermore, the trailer is shaped in an apex-truncated square pyramid.
Technical Paper

Reduction of Head Rotational Motions in Side Impacts Due to the Inflatable Curtain-A Way to Bring Down the Risk of Diffuse Brain Injury

1998-05-31
986167
Diffuse brain injuries are very common in side impacts, accounting for more than half of the injuries to the head. These injuries are often sustained in less severe side impacts. An English investigation has shown that diffuse brain injuries often originate from interior contacts, most frequently with the side window. They are believed to be mainly caused by quick head rotational motions. This paper describes a test method using a Hybrid III dummy head in a wire pendulum. The head impacts a simulated side window or an inflatable device, called the Inflatable Curtain (IC), in front of the window, at different speeds, and at different impact angles. The inflated IC has a thickness of around 70 mm and an internal (over) pressure of 1.5 bar. The head was instrumented with a three axis accelerometer as well as an angular velocity sensor measuring about the vertical (z) axis. The angular acceleration was calculated.
Technical Paper

Reducing Pressure Fluctuations at High Loads by Means of Charge Stratification in HCCI Combustion with Negative Valve Overlap

2009-06-15
2009-01-1785
Future demands for improvements in the fuel economy of gasoline passenger car engines will require the development and implementation of advanced combustion strategies, to replace, or combine with the conventional spark ignition strategy. One possible strategy is homogeneous charge compression ignition (HCCI) achieved using negative valve overlap (NVO). However, several issues need to be addressed before this combustion strategy can be fully implemented in a production vehicle, one being to increase the upper load limit. One constraint at high loads is the combustion becoming too rapid, leading to excessive pressure-rise rates and large pressure fluctuations (ringing), causing noise. In this work, efforts were made to reduce these pressure fluctuations by using a late injection during the later part of the compression. A more appropriate acronym than HCCI for such combustion is SCCI (Stratified Charge Compression Ignition).
Technical Paper

Performance of a Heavy Duty DME Engine - the Influence of Nozzle Parameters on Combustion and Spray Development

2009-04-20
2009-01-0841
DME was tested in a heavy duty diesel engine and in an optically accessible high-temperature and pressure spray chamber in order to investigate and understand the effect of nozzle parameters on emissions, combustion and fuel spray concentration. The engine study clearly showed that smaller nozzle orifices were advantageous from combustion, efficiency and emissions considerations. Heat release analysis and fuel concentration images indicate that smaller orifices result in higher mixing rate between fuel and air due to reductions in the turbulence length scale, which reduce both the magnitude of fuel-rich regions and the steepness of fuel gradients in the spray, which enable more fuel to burn and thereby shorten the combustion duration.
Technical Paper

Performance and Emission Analysis of a Non-Conventional Gasoline Engine

2000-06-19
2000-01-1840
A new engine design concept, characterized by a single cylinder-double piston and a cycloid crank rotor instead of the conventional crankshaft has been developed recently by Gul & Co Development AB, Sweden. The rotor (crank disc) is equipped with an oval groove in the shape of a sinusoidal cycloid according to the expression varies from 0 to 1. Inside the oval groove a ball rolls/slides in order to transfer force from the piston to the rotor. Such a rotor contains groove surfaces for the valve movement control as well. Each turn of the rotor corresponds to four strokes for both the pistons. Thus, a full 4-stroke engine cycle is developed for a single non-conventional crankshaft revolution. Having the extra freedom to select an optimal piston movement, the new design is believed to have the potential to provide low emissions, low noise levels and lower fuel consumption. Therefore, it has been subjected to an engine thermodynamics simulation, to provide an insight to engine performance.
Journal Article

Multi-hole Injectors for DISI Engines: Nozzle Hole Configuration Influence on Spray Formation

2008-04-14
2008-01-0136
High-pressure multi-hole injectors are one candidate injector type for closed-spaced direct injection (DI) gasoline engines. In such a system, the spark plug must be located close to the spray and, during stratified operation, the spray is ignited very soon after the fuel droplets have been vaporized. Thus there are very high demands on the sprays used in such a system. An additional challenge is the positioning of the spark plug relative to the spray; both consistent ignitability and the absence of liquid fuel droplets must be achieved. Many injector parameters influence spray formation; for example, hole diameter, length to hole diameter ratio, nozzle hole configuration etc. This paper investigates the spray formation and spray induced air movement associated with rotational symmetrical and asymmetrical nozzle hole configurations.
Technical Paper

Modelling of Gasoline and Ethanol Hollow-Cone Sprays Using OpenFOAM

2011-08-30
2011-01-1896
Over the past few years, an open-source code called OpenFOAM has been becoming a promising CFD tool for multi-dimensional numerical simulations of internal combustion engines. The primary goal of the present study is to assess the feasibility of the code for computations of hollow-cone sprays discharged by an outward-opening pintle-type injector by simulating the experiments performed recently by Hemdal et al., (SAE 2009-01-1496) with gasoline and ethanol sprays under the following conditions: air temperature Tair = 295 or 350 K, air pressure pair = 6 bar, fuel temperature Tfuel = 243, or 295, or 320 K, and fuel injection pressure pinj = 50, or 125, or 200 bar. To simulate the experiments, a pintle injector model and the physical properties of gasoline were implemented in OpenFOAM. The flow field calculated using the pintle injector model is more realistic than that yielded by the default unit injector model normally used in OpenFOAM.
Technical Paper

Modelling Gasoline Spray-wall Interaction -a Review of Current Models

2000-10-16
2000-01-2808
A literature survey was carried out to examine the advances in knowledge regarding spray impingement on surfaces over the last five years. Published experiments indicate that spray impingement is controlled by various spray parameters, surface conditions, and liquid properties. One disadvantage of the published results is that the experiments have mainly been conducted with water droplets or diesel fuel, often at atmospheric conditions. A sensitivity analysis was performed for one common impingement model. The purpose was to investigate how the model described different phenomena when different parameters were changed, including wall temperature, wall roughness and injection velocity of the spray. The model tested showed sensitivity to surface roughness, whereas changes in wall temperature only resulted in increased evaporation from the surface. The increase of injection velocity resulted in a decrease of fuel on the wall by 70%.
Technical Paper

Large-Eddy Simulation of the Flow Around a Ground Vehicle Body

2001-03-05
2001-01-0702
Large Eddy Simulation of the the flow around bus-like ground vehicle body is presented. Both the time-averaged and instantaneous aspects of this flow are studied. Time-averaged velocity profiles are computed and compared with the experiments [1] and show good agreement. The separation length and the base pressure coefficient are presented. The predicted pumping process in the near wake occurs with a Strouhal number St = 0.073, compared with St = 0.069 in the experiment. Unsteady results at two points are presented and compared with the experiments. The coherent structures are studied and show good agreement with the experiments.
X