Refine Your Search

Topic

Search Results

Technical Paper

Visualization of the Heat Transfer Surface of EGR Cooler to Examine Soot Adhesion and Abruption Phenomena

2017-03-28
2017-01-0127
Among the emerging technologies in order to meet ever stringent emission and fuel consumption regulations, Exhaust Gas Recirculation (EGR) system is becoming one of the prerequisites particularly for diesel engines. Although EGR cooler is considered to be an effective measure for further performance enhancement, exhaust gas soot deposition may cause degradation of the cooling. To address this issue, the authors studied the visualization of the soot deposition and removal phenomena to understand its behavior. Based on thermophoresis theory, which indicates that the effect of thermophoresis depends on the temperature difference between the gas and the wall surface exposed to the gas, a visualization method using a heated glass window was developed. By using glass with the transparent conductive oxide: tin-doped indium oxide, temperature of the heated glass surface is raised.
Technical Paper

The Effect of In-Cylinder Flow and Mixture Distributions on Combustion Characteristics in a HCCI Engine

2017-11-05
2017-32-0061
It has been widely known that thermal and fuel stratifications of in-cylinder mixture are effective to reduce in-cylinder pressure rise rate during high load HCCI operations. In order to optimize a combustion chamber design and combustion control strategy for HCCI engines with wide operational range, it is important to know quantitatively the influence of the temperature and fuel concentration distributions on ignition and heat release characteristics. At the same time, it is important to know the influence of in-cylinder flow and turbulence on the temperature and fuel concentration distributions. In this study, a numerical simulation of HCCI combustion were conducted to investigate the effects of the in-cylinder flow and turbulence, and the distributions of temperature on ignition and combustion characteristics in HCCI combustion.
Technical Paper

Numerical and Experimental Analysis of Abnormal Combustion in a SI Gasoline Engine with a Re-Entrant Piston Bowl and Swirl Flow

2022-01-09
2022-32-0038
Some SI (spark-ignition) engines fueled with gasoline for industrial machineries are designed based on the conventional diesel engine in consideration of the compatibility with installation. Such diesel engine-based SI engines secure a combustion chamber by a piston bowl instead of a pent-roof combustion chamber widely applied for SI engines for automobiles. In the development of SI engines, because knocking deteriorates the power output and the thermal efficiency, it is essential to clarify causes of knocking and predict knocking events. However, there has been little research on knocking in diesel engine-based SI engines. The purpose of this study is to elucidate knocking phenomena in a gasoline engine with a re-entrant piston bowl and swirl flow numerically and experimentally. In-cylinder visualization and pressure analysis of knock onset cycles have been experimentally performed. Locations of autoignition have been predicted by 3D-CFD analysis with detailed chemical reactions.
Technical Paper

Numerical and Experimental Analyses of Mixture Formation Process Using a Fan-shaped DI Gasoline Spray: Examinations on Effects of Crosswind and Wall Impingement

2009-04-20
2009-01-1502
The analysis of spray characteristics is important to examine the combustion characteristics of DI (Direct Injection) gasoline engines because the fuel-air mixture formation is controlled by spray characteristics and in-cylinder gas motion. However, the mixture formation process has not been well clarified yet. In this study, the characteristics of a fan-shaped spray caused from a slit-type injector, such as the droplet size, its velocity and the droplet distribution were simultaneously measured on a 2D plane by using improved ILIDS (Interferometric Laser Imaging for Droplet Sizing) method. ILIDS method is an optical measurement technique using interference fringes by illuminating a transparent spherical particles with a coherent laser light. In the measurement of the wall-impinging spray, effects of the distance to the wall and the wall temperature on the spray characteristics were investigated.
Technical Paper

Numerical Investigation of Multi-Stage HCCI Combustion with Small Chamber Inside Piston

2023-09-29
2023-32-0020
Homogeneous charge compression ignition (HCCI) combustion is promising for not only high thermal efficiency but also reducing nitrogen oxides (NOx) and PM simultaneously. However, the operational range of the HCCI combustion is limited because of some issues, such as poor control of ignition timing and knocking by the excessive rate of pressure rise. In this study, a new combustion system based on the HCCI combustion process is proposed based on the authors' previous experimental work. This combustion system has a divided combustion chamber of two parts, one is small and the other is large. The most significant feature is the small chamber inside the piston. At first, combustion takes place in the small chamber, and then the burned gas is ejected into the large chamber to ignite the mixture in the large chamber.
Technical Paper

Numerical Investigation of Knocking in a Small Two-Stroke Engine with a High Compression Ration to Improve Thermal Efficiency

2023-09-29
2023-32-0079
This study aimed to achieve both a high compression ratio and low knock intensity in a two-stroke engine. Previous research has suggested that knock intensity can be reduced by combining combustion chamber geometry and scavenging passaging design for the same engine specifications with a compression ratio of 13.7. In this report, we investigate whether low knock intensity can be achieved at compression ratios of 14.4 and 16.8 by adjusting the combustion chamber geometry and scavenging passage design. As a result, the mechanism by which combustion chamber geometry and scavenging passage design change knock intensity was clarified.
Technical Paper

Numerical Analysis of Combustion and Flow Inside a Small Rotary Engine for Developing an Unmanned Helicopter

2007-10-30
2007-32-0098
For a disaster relief and automatic inspections, an unmanned helicopter is strongly expected. To develop this, a very high power density source is required. A Wankel-type rotary engine can be the best candidate for the power source. In this study, the development of a very small rotary engine with a displacement of 30 cc is targeted. In order to improve the combustion efficiency, gas exchange and stable ignition, a multi dimensional simulation inside the combustion chamber was carried out. At first, the effect of volumetric efficiency on the maximum power is mentioned. Secondly, the effect of scavenging efficiency is discussed. Thirdly, a blow off through a plug hole is described. The position of plug hole was found important to reduce the blow off amount. Finally, the effect of combustion speed on the engine performance is predicted. As a result, the proposed design will be tested using a proto-type engine.
Technical Paper

Measurement of the Local Gas Temperature at Autoignition Conditions Inside the Combustion Chamber Using a Two-Wire Thermocouple

2006-04-03
2006-01-1344
The phenomenon of autoignition is an important aspect of HCCI and knock, hence reliable information on local gas temperature in a combustion chamber must be obtained. Recently, several studies have been conducted by using laser techniques such as CARS. It has a high spatial resolution, but has proven difficult to apply in the vicinity of combustion chamber wall and requires special measurement skills. Meanwhile, a thermocouple is useful to measure local gas temperature even in the vicinity of wall. However, a traditional one-wire thermocouple is not adaptable to measure the in-cylinder gas temperature due to slow response. The issue of response can be overcome by adopting a two-wire thermocouple. The two-wire thermocouple is consisted of two fine wire thermocouples with different diameter hence it is possible to determine the time constant using the raw data from each thermocouple.
Technical Paper

Measurement of Liquid Fuel Film Attached to the Wall in a Port Fueled SI Gasoline Engine

2023-10-24
2023-01-1818
Liquid fuel attached to the wall surface of the intake port, the piston and the combustion chamber is one of the main causes of the unburned hydrocarbon emissions from a port fueled SI engine, especially during transient operations. To investigate the liquid fuel film formation process and fuel film behavior during transient operation is essential to reduce exhaust emissions in real driving operations, including cold start operations. Optical techniques have been often applied to measure the fuel film in conventional reports, however, it is difficult to apply those previous techniques to actual engines during transient operations. In this study, using MEMS technique, a novel capacitance sensor has been developed to detect liquid fuel film formation and evaporation processes in actual engines. A resistance temperature detector (RTD) was also constructed on the MEMS sensor with the capacitance sensor to measure the sensor surface temperature.
Technical Paper

Investigation on Relationship between LSPI and Lube Oil Consumption and Its Countermeasure

2021-04-06
2021-01-0567
LSPI (Low speed pre-ignition) is a serious issue in highly boosted gasoline engines. The causes have been studied and lube oil affects the onset. In order to examine the effect of lubricating oil consumption on super knock caused by pre-ignition, measurements of in-cylinder pressure, temperature, oil consumption by sulfur trace at steady and transient conditions were conducted. Also, new piston ring pack was applied to reduce both of blow-by gas and oil consumption. As a result, accumulated oil during deceleration was found to cause pre-ignition after acceleration. The pre-ignition frequency is much higher than in steady condition, however, the amount of oil does not directly affect pre-ignition frequency, but dilution of oil and evaporation of oil/fuel and other parameters, such as temperature, pressure, and oil additives determine pre-ignition onset. In order to see the mechanism of pre-ignition onset, numerical simulations were conducted.
Technical Paper

Investigation of The Effect of Enhanced In-Cylinder Flow on HCCI Combustion in a Rapid Compression and Expansion Machine

2020-01-24
2019-32-0528
The purpose of this paper is to find a way to extend the high load limit of homogeneous charge compression ignition (HCCI) combustion. A newly developed rapid compression and expansion machine (RCEM) was employed to reproduce the typical HCCI high load condition. The in-cylinder turbulence was created by the special piston which equipped with a flow guide plate. Meanwhile, the ambient temperature distribution in the cylinder was determined by the wall temperature controlling system which was controlled by the independent coolant passages. In addition, the numerical simulation by using large eddy method coupled with a detailed chemical reaction was conducted as well. The results show that HCCI mode is potential to be improved at high load condition in full consideration of in-cylinder temperature, flow, and turbulence.
Technical Paper

Investigation of Lubricating Oil Properties Effect on Low Speed Pre-Ignition

2015-09-01
2015-01-1870
The effect of properties of lubricating oil on low speed pre-ignition (LSPI) was investigated. Three different factors of oil properties such as cetane number, distillation characteristics and Calcium (Ca) additive (with and without) are prepared and examined. Then actual engine test of LSPI was carried out to evaluate the effect and to clarify the mechanism and role of lubricating oil. Finally it is clarified that the oil cetane number and/or Ca additive strongly affect LSPI phenomena.
Technical Paper

Investigation of H2 Formation Characterization and its Contribution to Post- Oxidation Phenomenon in a Turbocharged DISI Engine

2020-09-15
2020-01-2188
In this research, simulation and experimental investigation of H2 emission formation and its influence during the post-oxidation phenomenon were conducted on a turbo-charged spark ignition engine. During the post-oxidation phenomenon phase, rich air-fuel ratio (A/F) is used inside the cylinder. This rich excursion gives rise to the production of H2 emission by various reactions inside the cylinder. It is expected that the generation of this H2 emission can play a key role in the actuation of the post-oxidation and its reaction rate if enough temperature and mixing strength are attained. It is predicted that when rich combustion inside the cylinder will take place, more carbon monoxide (CO)/ Total Hydro Carbon (THC)/ Hydrogen (H2) contents will arrive in the exhaust manifold. This H2 content facilitates in the production of OH radical which contributes to the post-oxidation reaction and in-turn can aid towards increasing the enthalpy.
Technical Paper

Investigation of Breakup Modeling of a Diesel Spray by Making Comparisons with 2D Measurement Data

2007-07-23
2007-01-1898
In this study, the characteristics of diesel spray droplets, such as the velocity and the diameter were simultaneously measured by using an improved ILIDS (Interferometric Laser Imaging for Droplet Sizing) method on a 2D plane to evaluate the droplet breakup modeling. In numerical analysis, DDM (Discrete Droplet Model) was employed with sub-models such as droplet breakup, droplet drag force and turbulence. Experiments have been performed with an accumulator type unit-injector system and a constant-volume high-pressure vessel under the condition of quiescent ambient gas. The injection pressure and ambient gas pressure were set up to 100 MPa and 0.1 / 1 MPa, respectively. The nozzle orifice diameter was 0.244 mm with a single hole. The measurement region was chosen at 40 ∼ 60 mm from the nozzle-tip. Numerical analysis of diesel sprays was conducted and the results were compared to the measured results.
Technical Paper

Improvement of Post-Oxidation Phenomena with Lambda-split, Post-Injection and Mixing Improvement of Exhaust Gas in Turbocharged GDI Engine

2023-09-29
2023-32-0094
Post-oxidation has been used to enhance the chemical reactions in the exhaust gas pipes, leading to the activations of the turbocharger and catalyst at cold state. In this research, a detailed study of the various mechanisms for post-oxidation is performed. For the post-oxidation activation, the unburned gas species (CO, THC, H2) in the exhaust manifold must be produced by some methodologies, such as scavenging, lambda-split, and post-injection. The required amount of O2 concentration can be either supplied by the scavenging (valve overlap tuning) or the secondary air injection (SAI) system. Mixing the species is also an important key to promoting post- oxidation, and an internal bypass adapter with a modified exhaust adapter shape was developed and evaluated.
Technical Paper

Improvement in Thermal Efficiency of Lean Burn Pre-Chamber Natural Gas Engine by Optimization of Combustion System

2017-03-28
2017-01-0782
To understand the mechanism of the combustion by torch flame jet in a gas engine with pre-chamber and also to obtain the strategy of improving thermal efficiency by optimizing the structure of pre-chamber including the diameter and number of orifices, the combustion process was investigated by three dimensional numerical simulations and experiments of a single cylinder natural gas engine. As a result, the configuration of orifices was found to affect the combustion performance strongly. With the same orifice diameter of 1.5mm, thermal efficiency with 7 orifices in pre-chamber was higher than that with 4 orifices in pre-chamber, mainly due to the reduction of heat loss by decreasing the impingement of torch flame on the cylinder linear. Better thermal efficiency was achieved in this case because the flame propagated area increases rapidly while the flame jets do not impinge on the cylinder wall intensively.
Technical Paper

Heat Transfer Analysis in a Diesel Engine Based on a Heat Flux Measurement Using a Rapid Compression and Expansion Machine

2017-11-05
2017-32-0115
To investigate the heat transfer phenomena inside the combustion chamber of a diesel engine, a correlation for the heat transfer coefficient in a combustion chamber of a diesel engine was investigated based on heat flux measured by the authors in the previous study(8) using the rapid compression and expansion machine. In the correlation defined in the present study, thermodynamically estimated two-zone temperatures in the burned zone and the unburned zone are applied. The characteristic velocity given in the correlation is related to the speed of spray flame impinging on the wall during the fuel injection period. After the fuel injection period, the velocity term of the Woschni’s equation is applied. It was shown that the proposed correlation well expresses heat transfer phenomena in diesel engines.
Technical Paper

Fuel Stratification Using Twin-Tumble Intake Flows to Extend Lean Limit in Super-Lean Gasoline Combustion

2018-09-10
2018-01-1664
To drastically improve thermal efficiency of a gasoline spark-ignited engine, super-lean burn is a promising solution. Although, studies of lean burn have been made by so many researchers, the realization is blocked by a cycle-to-cycle combustion variation. In this study, based on the causes of cycle-to-cycle variation clarified by the authors’ previous study, a unique method to reduce the cycle-to-cycle variation is proposed and evaluated. That is, a bulk quench at early expansion stroke could be reduced by making slight fuel stratification inside the cylinder using the twin-tumble of intake flows. As a result, the lean limit was extended with keeping low NOx and moderate THC emissions, leading to higher thermal efficiency.
Technical Paper

Experimental Study on the Relationship between Combustion and Vibration in a Gasoline Engine Part 2 Characteristics of Structure’s Exciting Force and Overall Research Summary

2023-05-08
2023-01-1146
Following Part 1 of the previous study, this paper reports the structure’s exciting force and summarize the overall research results. An experimental study was conducted to clarify the relationship between engine combustion and vibration, and to establish technology to suppress it. This study focused on the vehicle interior noise caused by combustion in which vibration transmission is the main component at high speed and high load region. A phenomenon in which both the combustion’s exciting force and the structure’s exciting force are combined is defined as vehicle interior noise caused by combustion. Conventionally, combustion and vibration are often discussed in terms of the average cycle, but considering the nonstationary property of vibration, in this paper analyzed the structure’s exciting force characteristics for vibration in cycle-by-cycle. Analysis was conducted using the combustion indicators clarified in the previous study.
Technical Paper

Evaluation of a Concept for DI Gasoline Combustion Using Enhanced Gas Motion

1998-02-23
980152
A direct injection gasoline engine system which employs a unique combustion system with enhanced gas motion is evaluated. Enhanced gas motion is produced by employing both a moderately strong swirl flow and a cavity in the piston. Advantages of this system are that the injection timing or spark timing need not be controlled severely and that since the injection timing can be set at near the intake BDC, time for evaporation can be gained to reduce soot emissions. Problems to be improved are that the Nox emissions level is worse than other lean burn systems and full load operation is not evaluated. According to the numerical calculations, the problems may be solved by enhancing the in-cylinder gas motion with axial stratification of swirl intensity at intake BDC; strong swirl near the cylinder head and weak swirl near the piston surface.
X