Refine Your Search

Topic

Author

Search Results

Technical Paper

the potential of Unconventional Powerplants for Vehicle Propulsion

1959-01-01
590039
COMPARISON of work capacity per unit mass and volume of different energy carriers shows that liquid hydrocarbons are superior to other energy sources. Solar and nuclear powerplants as well as their use in conjunction with a steam engine are examined in this paper. Suitability of an electric drive is discussed. Using a production 2-stroke diesel engine and its development forecast, a comparison is made of spark ignition, diesel, and gas turbine engines. The status of the free-piston engine turbine combination is reviewed.
Technical Paper

Vehicle Crash Research and Manufacturing Experience

1968-02-01
680543
The search for improvements in occupant protection under vehicle impact is hampered by a real lack of reliable biomechanical data. To help fill this void, General Motors has initiated joint research with independent researchers such as the School of Medicine, U. C. L. A. – in this case to study localized head and facial trauma — and has developed such unique laboratory tools as “Tramasaf,” a human-simulating headform, and “MetNet,” a pressure-sensitive metal foam. Research applied directly to product design also has culminated in developments such as the Side-Guard Beam for side impact protection.
Technical Paper

TodayS Electronics in TodayS Vehicles

1998-10-19
98C028
Historically, the long development time required to produce a new automobile has meant that the electronics in that vehicle might lag the state-of-the-art by several years. For traditional vehicle electronics, this was certainly an appropriate delay, ensuring through extensive testing and qualification that the quality and reliability of the electronic systems met rigorous standards. However, with the growing consumer-oriented electronics content in today's vehicles, it is becoming more difficult for the automotive manufacturers to meet consumers' expectations with older technology. Couple this with the fast-paced consumer product cycle, typically nine to eighteen and the result is increasing pressure on the vehicle manufacturers from after-market electronics suppliers, who can update their product lines as fast as the component manufacturers can produce new models.
Technical Paper

The Manufacturing Manager and the Computer

1973-02-01
730180
This paper discusses the development and execution of a unique one-day, hands-on seminar designed to introduce top-level manufacturing managers to the computer. Total emphasis is on manufacturing applications, and each manager is afforded an opportunity to use the computer himself. The mystery of data cards, teletype terminals, and CRTs is removed during line balancing, simulation, and process control work sessions. The seminar was developed by General Motor's Manufacturing Development Activity for internal presentation to GM managers.
Technical Paper

The First Standard Automotive Crash Dummy

1969-02-01
690218
The SAE Recommended Practice J963 “Anthropomorphic Test Device for Dynamic Testing” describes a standard 50th percentile adult male anthropomorphic test dummy. For nearly three years the Crash Test Dummy Task Force worked with the limited data available in selecting values for the body dimensions and ranges of motion. The data for specifying the values of mass distribution were developed experimentally as was a test procedure for determining the dynamic spring rate of the thorax.
Technical Paper

The Effects of Trip Length and Oil Type (Synthetic Versus Mineral Oil) on Engine Damage and Engine-Oil Degradation in a Driving Test of a Vehicle with a 5.7L V-8 Engine

1993-10-01
932838
Extending engine-oil-change intervals is of interest from the standpoint of reducing used oil disposal and reducing time and expense of maintenance. However, the oil must be changed before serious oil degradation and engine damage occur. Three variables which influence oil degradation were chosen for investigation: base oil composition (synthetic oil versus mineral oil), trip length (short trips versus long trips), and driving schedule (degrading an oil during a given type of service, then changing to another type of service without an intervening oil change). Analysis of oil samples taken throughout the testing program indicated that type of service (freeway compared to short trip) influenced oil degradation to a greater extent than oil type. That is, API SG-quality synthetic oil in short-trip service degraded faster than borderline SG-quality mineral oil in long-trip service.
Technical Paper

The Effect of Limiting Shoulder Belt Load with Air Bag Restraint

1995-02-01
950886
The dilemma of using a shoulder belt force limiter with a 3-point belt system is selecting a limit load that will balance the reduced risk of significant thoracic injury due to the shoulder belt loading of the chest against the increased risk of significant head injury due to the greater upper torso motion allowed by the shoulder belt load limiter. However, with the use of air bags, this dilemma is more manageable since it only occurs for non-deploy accidents where the risk of significant head injury is low even for the unbelted occupant. A study was done using a validated occupant dynamics model of the Hybrid III dummy to investigate the effects that a prescribed set of shoulder belt force limits had on head and thoracic responses for 48 and 56 km/h barrier simulations with driver air bag deployment and for threshold crash severity simulations with no air bag deployment.
Technical Paper

The Development of Auto Temp II

1972-02-01
720288
The development of the AUTO TEMP II Temperature Control System used in Chrysler Corp. vehicles is summarized. A description of the design, development, function, and manufacturing aspects of the control system is presented, with emphasis on unique control parameters, reliability, serviceability, and check-out of production assemblies. Auto Temp II was developed by Chrysler in conjunction with Ranco Incorporated. The servo-controlled, closed-loop system, which has a sensitivity of 0.5 F, utilizes a water-flow control valve for temperature control, along with a cold engine lockout. The basic components are: sensor string, servo, and amplifier. All automatic functions involving control of mass flow rate, temperature, and distribution of the air entering the vehicle, are encompassed in one control unit. All components are mechanically linked through the gear train and are responsive to the amplifier through the feedback potentiometer.
Technical Paper

The Chrysler “Sure-Brake” - The First Production Four-Wheel Anti-Skid System

1971-02-01
710248
The paper outlines testing, development, and operation of the first production four-wheel slip control system for passenger cars in the United States. The Chrysler Corp. calls the system “Sure-Brake,” but it is more generally known as “anti-skid.” The first portion of the paper deals with considerations that led Chrysler into the Sure-Brake system, the philosophy behind the system, and a detailed explanation of its operation. The second portion deals with the development and testing of the system, leading to its release as an option on the 1971 Imperial. The testing program introduced a new dimension to brake engineering. Before the advent of wheel slip control systems, many thousands of brake tests were conducted but were always terminated at the point of skid. These tests were also conducted mainly on black top or concrete roads. For the first time, thousands of stops were made at maximum deceleration on every available surface.
Technical Paper

The Application of Direct Body Excitation Toward Developing a Full Vehicle Objective Squeak and Rattle Metric

2001-04-30
2001-01-1554
In order to engineer Squeak & Rattle (S&R) free vehicles it is essential to develop an objective measurement method to compare and correlate with customer satisfaction and subjective S&R assessments. Three methods for exciting S&Rs -type surfaces. Excitation methods evaluated were road tests over S&R surfaces, road simulators, and direct body excitation (DBE). The principle of DBE involves using electromagnetic shakers to induce controlled, road-measured vibration into the body, bypassing the tire patch and suspension. DBE is a promising technology for making objective measurements because it is extremely quiet (test equipment noise does not mask S&Rs), while meeting other project goals. While DBE is limited in exposing S&Rs caused by body twist and suspension noises, advantages include higher frequency energy owing to electro-dynamic shakers, continuous random excitation, lower capital cost, mobility, and safety.
Technical Paper

The 1997 Chevrolet Corvette Structure Architecture Synthesis

1997-02-24
970089
This paper describes the design, synthesis-analysis and development of the unique vehicle structure architecture for the fifth generation Chevrolet Corvette, ‘C5’, which starts in the 1997 model year. The innovative structural layout of the ‘C5’ enables torsional rigidity in an open roof vehicle which exceeds that of all current production open roof vehicles by a wide margin. The first structural mode of the ‘C5’ in open roof configuration approaches typical values measured in similar size fixed roof vehicles. Extensive use of CAE and a systems methodology of benchmarking and requirements rolldown were employed to develop the ‘C5’ vehicle architecture. Simple computer models coupled with numerical optimization were used early in the design process to evaluate every design concept and alternative iteration for mass and structural efficiency.
Technical Paper

TFC/IW

1978-02-01
780937
TFC/IW, total fuel consumption divided by inertia (test) weight is a useful concept in analyzing the total or composite fuel economy generated in thousands of tests using the carbon balance technique in EPA Federal Test Procedure and Highway Driving Cycle. TFC/IW is a measure of drive train efficiency that requires no additional complicating assumptions. It is applicable to one test or a fleet representing many tests.
Technical Paper

Streamlining Chassis Tuning for Chevrolet and GMC Trucks and Vans

2005-04-11
2005-01-0406
This paper describes some methods for greatly reducing or possibly eliminating subjective tuning of suspension parts for ride and handling. Laptop computers can now be used in the vehicle to guide the tuning process. The same tools can be used to select solutions that reduce sensitivity to production and environmental variations. OBJECTIVE Reduce or eliminate time required for tuning of suspension parts for ride characteristics. Improve the robustness of ride performance relative to variations in ambient temperature and production tolerances. PROBLEM REQUIRING SOLUTION AND METHOD OF APPROACH Traditional development programs for new vehicles include time-consuming subjective ride evaluations. One example is shock absorber tuning. Even if sophisticated models define force-velocity curves, numerous hardware iterations are needed to find valvings that will reproduce the curves. Many evaluation rides are needed to modify the valvings to meet performance targets.
Technical Paper

Size, Weight and Biomechanical Impact Response Requirements for Adult Size Small Female and Large Male Dummies

1989-02-01
890756
This paper summarizes the rationale used to specify the geometric, inertial and impact response requirements for a small adult female dummy and a large adult male dummy with impact biofidelity and measurement capacity comparable to the Hybrid III dummy, the most advanced midsize adult male dummy. Body segment lengths and weights for these two dummies were based on the latest anthropometry studies for the extremes of the U.S.A. adult population. Other characteristic body segment dimensions were calculated from geometric and mass scaling relationships that assured that each body segment had the same mass density as the corresponding body segment of the Hybrid III dummy. The biomechanical impact response requirements for the head, neck, chest and knee of the Hybrid III dummy were scaled to give corresponding biomechanical impact response requirements for each dummy.
Technical Paper

Simulation of the Hybrid III Dummy Response to Impact by Nonlinear Finite Element Analysis

1994-11-01
942227
The Hybrid III dummy is an anthropomorphic (humanlike) test device, generally used in crashworthiness testing to assess the extent of occupant protection provided by the vehicle structure and its restraint systems in the event of vehicle crash. Lumped-parameter analytical models are commonly used to simulate the dummy response. These models, by virtue of their limited number of degrees of freedom, can neither represent accurate three-dimensional dummy geometry nor detailed structural deformations. In an effort to improve the state-of-the-art in analytical dummy simulations, a set of finite element models of the Hybrid III dummy segments - head, neck, thorax, spine, pelvis, knee, upper extremities and lower extremities - were developed. The component models replicated the hardware geometry as closely as possible. Appropriate elastic material models were selected for the dummy “skeleton”, with the exterior “soft tissues” represented by viscoelastic materials.
Technical Paper

Significance of Intersection Crashes for Older Drivers

1996-02-01
960457
As the driving population ages, there is a need to understand the accident patterns of older drivers. Previous research has shown that side impact collisions, usually at an intersection, are a serious problem for the older driver in terms of injury outcome. This study compares the frequency of side impact, intersection collisions of different driver age groups using state and national police-reported accident data as well as an in-depth analysis of cases from a fatal accident study. All data reveal that the frequency of intersection crashes increases with driver age. The state and national data show that older drivers have an increase frequency of intersection crashes involving vehicles crossing paths prior to the collision compared to their involvement in all crash types. When taking into account traffic control devices at an intersection, older drivers have the greatest involvement of multiple vehicle crashes at a signed intersection.
Technical Paper

Safety Belt Buckle Environment in Vehicle Planar Crash Tests

2008-04-14
2008-01-1231
A study was conducted by General Motors at its crash test facility located at the Milford Proving Ground. The intent of this study was to expand upon the currently available research regarding the safety belt buckle environment during full scale planar crash tests. Buckle accelerations and webbing tensions were measured and recorded to characterize, in part, buckle responses in a crash environment. Previous studies have focused primarily on the component level testing of safety belt buckles. The crash tests included a variety of vehicles, impact types, seating positions, Anthropomorphic Test Devices (ATDs), impact speeds, and impact angles. Also included were various safety belt restraint systems and pretensioner designs. This study reports on data recorded from 100 full scale crash tests with 180 instrumented end release safety belt buckles. Acceleration measurements were obtained with tri-axial accelerometers mounted onto the buckles.
Technical Paper

SIR Sensor Closure Time Prediction for Frontal Impact Using Full Vehicle Finite Element Analysis

1993-03-01
930643
This paper describes an analytical method to predict the sensor closure time for an airbag (Supplemental Inflatable Restraint - SIR) system in frontal impacts. The analytical tools used are the explicit finite element code, an in-house sensor closure time prediction program, and a full vehicle finite element model. Nodal point information obtained from the full vehicle finite element simulation is used to predict the sensor closure time of the airbag system. This analytical method can provide the important crash signature information for a SIR system development of a new vehicle program. In this paper, 0-degree frontal impacts at four different impact speeds with two different bumper energy absorption systems are studied using the non-linear finite element computer program DYNA3D. It is concluded that this analytical method is very useful to predict the SIR sensor closure time.
Technical Paper

Rollover and Drop Tests - The Influence of Roof Strength on Injury Mechanics Using Belted Dummies

1990-10-01
902314
This report presents the test methods and results of a study involving lap/shoulder belted dummies in dynamic dolly rollover tests and inverted vehicle drop tests. Data are presented showing dummy neck loadings resulting from head impacts to the vehicle interior as the vehicle contacts the ground. Comparison of the number and magnitude of axial neckloads are presented for rollcaged and production vehicles, as well as an analysis of the factors which influence neckloads under these conditions.
X