Refine Your Search

Topic

Author

Search Results

Technical Paper

Wind Tunnel-to-Road Aerodynamic Drag Correlation

1988-02-01
880250
A comprehensive test program was conducted to correlate aerodynamic drag measurements from the General Motors Aerodynamics Laboratory with coastdown results. An improved method of coastdown testing was used to minimize the sources of error in determining aerodynamic drag. Several vehicles were tested, covering a large range of aerodynamic drag values, representative of current and future production vehicles. Wind tunnel and coastdown results were determined to be in good agreement, with an average drag coefficient difference of only. 008 (2%).
Technical Paper

Washcoat Technology and Precious Metal Loading Study Targeting the California LEV MDV2 Standard

1996-10-01
961904
Meeting the California Medium-Duty truck emissions standards presents a significant challenge to automotive engineers due to the combination of sustained high temperature exhaust conditions, high flow rates and relatively high engine out emissions. A successful catalyst for an exhaust treatment system must be resistant to high temperature deactivation, maintain cold start performance and display high three-way conversion efficiencies under most operating conditions. This paper describes a catalyst technology and precious metal loading study targeting a California Medium-Duty truck LEV (MDV2) application. At the same time a direction is presented for optimizing toward the Federal Tier 1 standard through reduction of precious metal use. The paper identifies catalytic formulations for a twin substrate, 1.23 L medium-coupled converter. Two are used per vehicle, mounted 45 cm downstream of each manifold on a 5.7 L V8 engine.
Technical Paper

Truck Tire Force and Moment in Cornering - Braking - Driving on Ice, Snow, and Dry Surfaces

2000-12-04
2000-01-3431
Accurate, real-world determination of tire force and moment properties is essential for computer modeling of vehicle handling. Characterizing these properties on surfaces ranging from dry pavement to snow to ice presents significant challenges. This paper reviews recent progress and results in this area for light truck tires using a test vehicle custom-designed for this purpose. It provides examples for free-rolling cornering, straight-line acceleration / braking and acceleration / braking in turns. The discussion then turns to the question of adapting the technology used to characterizing of tires for Class 8 vehicles.
Technical Paper

Truck Aerodynamics

1962-01-01
620531
A requirement for larger trucks and higher operating speed is indicated. The present report presents wind tunnel data on drag of a Chevrolet truck-trailer combination. Possible means of drag reduction are examined. Although side force and yawing moment data are presented, their effect on directional stability are not, at present analyzed.
Technical Paper

The Mvma Investigation Into the Complexities of Heavy Truck Splash and Spray Problem

1985-01-01
856097
Splash and spray conditions created by tractor-trailer combinations operating on the Federal highway system have been studied and tested for many years with mixed results. Past events are reviewed briefly in this paper. In additional testing during 1983, using new state-of- the-art splash/spray suppressant devices, some encouragement was provided that these devices could work. The 1984 Motor Vehicle Manufacturers Association (MVMA) test program was designed to develop practicable and reliable test procedures to measure effectiveness of splash and spray reduction methods applied to tractor-trailer combination vehicles. Over 40 different combinations of splash/spray suppression devices on five different tractors and three van trailer types were tested. The spray-cloud densities for some 400 test runs were measured by laser transmissometers and also recorded by still photography, motion pictures, and videotape. On-site observers made subjective ratings of spray density.
Technical Paper

The Design and Development of the 2003 Chevrolet Kodiak and GMC TopKick Medium Duty Trucks

2002-11-18
2002-01-3100
For model year 2003, the General Motors Corporation is introducing new medium duty trucks - the Chevrolet Kodiak and GMC TopKick. These new trucks replace the previous versions of the Kodiak and TopKick medium duty trucks that were introduced in 1989 and the Chevrolet and GMC 3500HD that debuted in the 1991 model year. This new series of trucks marks a clear change in General Motors' strategy in the medium duty marketplace. It emphasizes General Motors' strong commitment to the medium duty market, as well as a strong focus on customer needs, vehicle quality and reliability. This paper describes the General Motors strategy in the medium duty market, along with the history of the design and development of these new products. Finally, this paper will discuss performance to program objectives.
Technical Paper

The Aerodynamic Optimization of a Successful IMSA GT Race Car

1996-12-01
962518
This paper describes the methodology used to achieve optimum aerodynamic performance of the 1992 through 1995 Oldsmobile Cutlass Supreme IMSA GT race car and will demonstrate the continuous improvements successfully used to respond to rule changes and competition. The concerted effort by the sanctioning body to limit the aerodynamic performance of IMSA GT race cars for the 1995 season required a rigorous wind tunnel test program backed by track validation to maintain the necessary aerodynamic balance, cooling flows, engine induction flow, and overall competitive parity. The specific modifications that were evaluated to accommodate these rules changes will be detailed in this paper. Special test methodologies developed to better understand specific aerodynamics questions such as the effects of vehicle attitude, internal cooling flows, underbody treatments, and engine air inlet performance will also be discussed.
Technical Paper

Techniques for Contact Considerations in Fatigue Life Estimations of Automotive Structures

2013-04-08
2013-01-1201
Contacts or interactions commonly exist between adjacent components in automotive structures, and most of the time they dominate stress status of the components. However, when the routine pseudo stress approach is employed in fatigue life estimations, simulating contacts present special challenges. This may result in coarse stress status and corresponding coarser fatigue life estimations at the contact locations. In this paper, concept, development and procedures of two techniques to consider contacts in fatigue life estimations of automotive structures are described in detail. One is still pseudo stress approach based, but employs additional 1-D connection elements to simulate contacts. The other is nonlinear stress approach based, but equivalent constantly repeating cyclic critical load cases are introduced and utilized. The contacts are simulated by interface setup provided in the software.
Technical Paper

Streamlining Chassis Tuning for Chevrolet and GMC Trucks and Vans

2005-04-11
2005-01-0406
This paper describes some methods for greatly reducing or possibly eliminating subjective tuning of suspension parts for ride and handling. Laptop computers can now be used in the vehicle to guide the tuning process. The same tools can be used to select solutions that reduce sensitivity to production and environmental variations. OBJECTIVE Reduce or eliminate time required for tuning of suspension parts for ride characteristics. Improve the robustness of ride performance relative to variations in ambient temperature and production tolerances. PROBLEM REQUIRING SOLUTION AND METHOD OF APPROACH Traditional development programs for new vehicles include time-consuming subjective ride evaluations. One example is shock absorber tuning. Even if sophisticated models define force-velocity curves, numerous hardware iterations are needed to find valvings that will reproduce the curves. Many evaluation rides are needed to modify the valvings to meet performance targets.
Technical Paper

Small Scale Research in Automobile Aerodynamics

1966-02-01
660384
This paper describes a three component strain gage balance designed to measure aerodynamic forces exerted on small automobile models when subjected to turbulence in an experimental wind tunnel. The instrument is described and the details of obtaining values with it are fully explained. Although tests were conducted on these models at quarter-scale Reynolds number, results agree closely with similar tests on larger models. The balance makes practical some unusual preliminary investigations before developing full-scale prototypes.
Technical Paper

Simulation and Test Correlation of Wheel Radial Fatigue Test

2013-04-08
2013-01-1198
The Radial fatigue test is intended to find the structural performance of a wheel for normal highway use on passenger cars, light trucks and multipurpose vehicles. The wheel has to withstand repeated radial loading for a defined number of cycles in order to pass the test. The fatigue life of a wheel subjected to the repeated loading is calculated from the stress values obtained from static analysis. The accuracy of stress value depends on various parameters like tire modeling, simulation methods, load applications etc. This paper describes the tire finite element model representation and its validation, radial fatigue test simulation process and the physical testing correlation. Tire vertical stiffness plays a vital role in the radial test as the tire transfers the load from driven drum to the wheel. Tire vertical spring rate testing is done as per the SAE J2704 standard and the same condition has been simulated in CAE.
Technical Paper

Sideband and Sound Field Spatial Considerations in the Measurement of Gear Noise

2005-05-16
2005-01-2517
Measurement of gear noise requires accurate measurement of gear mesh harmonic sound levels. The sound signal may include sidebands, such that the frequency bandwidth and computation method of respective “order tracking” analysis will have a profound effect on measured sound levels. A further consideration is the spatial distribution of the sound field inside typical passenger cars and light duty trucks, in which sound levels can change dramatically within small distances. This paper provides a discussion of the data processing and measurement location effects at hand. It explains their influence and provides guidelines for their selection.
Technical Paper

Rollover Sensor Signature Test Development

2007-04-16
2007-01-0375
Although rollover crashes represent a small fraction (approximately 3%) of all motor vehicle crashes, they account for roughly one quarter of crash fatalities to occupants of cars, light trucks, and vans (NHTSA Traffic Safety Facts, 2004). Therefore, the National Highway Traffic Safety Administration (NHTSA) has identified rollover injuries as one of its safety priorities. Motor vehicle manufacturers are developing technologies to reduce the risk of injury associated with rollover collisions. This paper describes the development by General Motors Corporation (GM) of a suite of laboratory tests that can be used to develop sensors that can deploy occupant protection devices like roof rail side air bags and pretensioners in a rollover as well as a discussion of the challenges of conducting this suite of tests.
Technical Paper

Real World Performance of an Onboard Gasoline/Ethanol Separation System to Enable Knock Suppression Using an Octane-On-Demand Fuel System

2018-04-03
2018-01-0879
Higher compression ratio and turbocharging, with engine downsizing can enable significant gains in fuel economy but require engine operating conditions that cause engine knock under high load. Engine knock can be avoided by supplying higher-octane fuel under such high load conditions. This study builds on previous MIT papers investigating Octane-On-Demand (OOD) to enable a higher efficiency, higher-boost higher compression-ratio engine. The high-octane fuel for OOD can be obtained through On-Board-Separation (OBS) of alcohol blended gasoline. Fuel from the primary fuel tank filled with commercially available gasoline that contains 10% by volume ethanol (E10) is separated by an organic membrane pervaporation process that produces a 30 to 90% ethanol fuel blend for use when high octane is needed. In addition to previous work, this paper combines modeling of the OBS system with passenger car and medium-duty truck fuel consumption and octane requirements for various driving cycles.
Journal Article

Rainflow Counting Based Block Cycle Development for Fatigue Analysis using Nonlinear Stress Approach

2013-04-08
2013-01-1206
An accurate representation of proving ground loading is essential for nonlinear Finite Element analysis and component fatigue test. In this paper, a rainflow counting based multiple blocks loading development procedure is described. The procedure includes: (1) Rainflow counting analysis to obtain the relationship between load range and cumulative repeats and the statistical relationship between load range and mean load; (2) Formation of preliminary multiple loading blocks with specified load range, mean load, and the approximate cycle repeats, and construction of the preliminary multiple loading blocks; (3) Calibration and finalization of the repeats for preliminary multiple loading blocks according to the equivalent damage rule, meaning that the damage value due to the block loads is equivalent to that from a PG loading.
Technical Paper

Performance of Coatings for Underbody Structural Components

2001-03-05
2001-01-0363
The Auto/Steel Partnership established the Light Truck Frame Project Group in 1996 with two objectives: (a) to develop materials, design and fabrication knowledge that would enable the frames on North American OEM (original equipment manufacturer) light trucks to be reduced in weight, and (b) to improve corrosion resistance of frames on these vehicles, thereby allowing a reduction in the thickness of the components and a reduction in frame weight. To address the issues relating to corrosion, a subgroup of the Light Truck Frame Project Group was formed. The group comprised representatives from the North American automotive companies, test laboratories, frame manufacturers, and steel producers. As part of a comprehensive test program, the Corrosion Subgroup has completed tests on frame coatings. Using coated panels of a low carbon hot rolled and pickled steel sheet and two types of accelerated cyclic corrosion tests, seven frame coatings were tested for corrosion performance.
Technical Paper

POWERMATIC A New Automatic for Chevrolet Transmission Heavy-Duty Trucks

1957-01-01
570012
THIS paper describes the development of a truck automatic transmission, from a statement of broad objectives through the growing pains, to road testing of the final product. Emphasis is placed upon original thinking that led to the decision to undertake such a project, compromises that suggested themselves throughout the various stages, and features tried and found wanting as well as those retained. The finished product is described full though not in detail, stress being placed upon interesting and novel design features.
Technical Paper

Non-Linear Modeling of Bushings and Cab Mounts for Calculation of Durability Loads

2014-04-01
2014-01-0880
Cab mounts and suspension bushings are crucial for ride and handling characteristics and must be durable under highly variable loading. Such elastomeric bushings exhibit non-linear behavior, depending on excitation frequency, amplitude and the level of preload. To calculate realistic loads for durability analysis of cars and trucks multi-body simulation (MBS) software is used, but standard bushing models for MBS neglect the amplitude dependent characteristics of elastomers and therefore lead to a trade-off in simulation accuracy. On the other hand, some non-linear model approaches lack an easy to use parameter identification process or need too much input data from experiments. Others exhibit severe drawbacks in computing time, accuracy or even numerical stability under realistic transient or superimposed sinusoidal excitation.
Technical Paper

Gasoline Combustion Modeling of Direct and Port-Fuel Injected Engines using a Reduced Chemical Mechanism

2013-04-08
2013-01-1098
A set of reduced chemical mechanisms was developed for use in multi-dimensional engine simulations of premixed gasoline combustion. The detailed Primary Reference Fuel (PRF) mechanism (1034 species, 4236 reactions) from Lawrence Livermore National Laboratory (LLNL) was employed as the starting mechanism. The detailed mechanism, referred to here as LLNL-PRF, was reduced using a technique known as Parallel Direct Relation Graph with Error Propagation and Sensitivity Analysis. This technique allows for efficient mechanism reduction by parallelizing the ignition delay calculations used in the reduction process. The reduction was performed for a temperature range of 800 to 1500 K and equivalence ratios of 0.5 to 1.5. The pressure range of interest was 0.75 bar to 40 bar, as dictated by the wide range in spark timing cylinder pressures for the various cases. In order to keep the mechanisms relatively small, two reductions were performed.
Technical Paper

Front Suspension Multi-Axis Testing

1987-11-01
872255
A front suspension laboratory test procedure was developed to reproduce time-correlated fatigue damaging events from a light truck road durability test. Subsequently, the performance of front suspension systems for the GMT 400 light truck program were evaluated in terms of customer reliability. Both prototype and pilot testing, as well as computer modeling, were used in the evaluation.
X