Refine Your Search

Topic

Search Results

Journal Article

What's Speed Got To Do With It?

2010-04-12
2010-01-0526
The statistical analysis of vehicle crash accident data is generally problematic. Data from commonly used sources is almost never without error and complete. Consequently, many analyses are contaminated with modeling and system identification errors. In some cases the effect of influential factors such as crash severity (the most significant component being speed) driver behavior prior to the crash, etc. on vehicle and occupant outcome is not adequately addressed. The speed that the vehicle is traveling at the initiation of a crash is a significant contributor to occupant risk. Not incorporating it may make an accident analysis irrelevant; however, despite its importance this information is not included in many of the commonly used crash data bases, such as the Fatality Analysis Reporting System (FARS). Missing speed information can result in potential errors propagating throughout the analysis, unless a method is developed to account for the missing information.
Technical Paper

The Effects of Catalytic Converter Location and Palladium Loading on Tailpipe Emissions

2012-04-16
2012-01-1247
Meeting regulated tailpipe emission standards requires a full system approach by automotive engineers encompassing: engine design, combustion system metrics, exhaust heat management, aftertreatment design and exhaust system packaging. Engine and combustion system design targets define desired engine out exhaust constituents, exhaust gas temperatures and oil consumption rates. Protecting required catalytic converter volume in the engine bay for stricter tailpipe emission standards is becoming more difficult. Future fuel economy mandates are leading to vehicle downsizing which is affecting all aspects of vehicle component packaging. In this study, we set out to determine the potential palladium (Pd) cost penalty as a result of increased light-off time required as a catalyst is positioned further away from the engine. Two aged converter systems with different Pd loadings were considered, and EPA FTP-75 emission tested at six different catalyst positions.
Journal Article

Statistical Considerations for Evaluating Biofidelity, Repeatability, and Reproducibility of ATDs

2013-04-08
2013-01-1249
Reliable testing of a mechanical system requires the procedures used for the evaluation to be repeatable and reproducible. However, it is never possible to exactly repeat or reproduce the tests that are used for evaluation. To overcome this limitation, a statistical evaluation procedure can generally be used. However, most of the statistical procedures use scalar values as input without the ability to handle vectors or time-histories. To overcome these limitations, two numerical/statistical methods for determining if the impact time-history response of a mechanical system is repeatable or reproducible are evaluated and elaborated upon. Such a system could be a vehicle, a biological human surrogate, an Anthropometric Test Device (ATD or dummy), etc. The responses could be sets of time-histories of accelerations, forces, moments, etc., of a component or of the system. The example system evaluated is the BioRID II rear impact dummy.
Journal Article

Reducing Radiated Structural Noise from AIS Surfaces using Several FEM Optimization Methods

2013-04-08
2013-01-0997
Two finite element optimization techniques are presented for minimizing automotive engine air induction structural radiated noise and mass. Air induction systems are generally made of thin wall plastic which is exposed to high levels of pulsating engine noise. Weak air induction system walls vibrate excessively creating noise that can be heard by the driver. The conventional approach is to add ribs (many times through trial and error) which increase part weight or by adding “kiss-offs,” which restrict air flow. The finite element optimization methods considered here are shape optimization and topometry optimization. Genesis, a fully integrated finite element analysis and optimization package by Vanderplaats Research & Development, was used to perform finite element optimization. Choice of optimization method is primarily dependent on several factors which are appearance, part interference and flow restriction requirements.
Journal Article

Random Vibration Testing Development for Engine Mounted Products Considering Customer Usage

2013-04-08
2013-01-1007
In this paper, the development of random vibration testing schedules for durability design verification of engine mounted products is presented, based on the equivalent fatigue damage concept and the 95th-percentile customer engine usage data for 150,000 miles. Development of the 95th-percentile customer usage profile is first discussed. Following that, the field engine excitation and engine duty cycle definition is introduced. By using a simplified transfer function of a single degree-of-freedom (SDOF) system subjected to a base excitation, the response acceleration and stress PSDs are related to the input excitation in PSD, which is the equivalent fatigue damage concept. Also, the narrow-band fatigue damage spectrum (FDS) is calculated in terms of the input excitation PSD based on the Miner linear damage rule, the Rayleigh statistical distribution for stress amplitude, a material's S-N curve, and the Miles approximate solution.
Journal Article

Rainflow Counting Based Block Cycle Development for Fatigue Analysis using Nonlinear Stress Approach

2013-04-08
2013-01-1206
An accurate representation of proving ground loading is essential for nonlinear Finite Element analysis and component fatigue test. In this paper, a rainflow counting based multiple blocks loading development procedure is described. The procedure includes: (1) Rainflow counting analysis to obtain the relationship between load range and cumulative repeats and the statistical relationship between load range and mean load; (2) Formation of preliminary multiple loading blocks with specified load range, mean load, and the approximate cycle repeats, and construction of the preliminary multiple loading blocks; (3) Calibration and finalization of the repeats for preliminary multiple loading blocks according to the equivalent damage rule, meaning that the damage value due to the block loads is equivalent to that from a PG loading.
Book

Principles of Vibration Analysis with Applications in Automotive Engineering

2011-01-10
This book, written for practicing engineers, designers, researchers, and students, summarizes basic vibration theory and established methods for analyzing vibrations. Principles of Vibration Analysis goes beyond most other texts on this subject, as it integrates the advances of modern modal analysis, experimental testing, and numerical analysis with fundamental theory. No other book brings all of these topics together under one cover. The authors have compiled these topics, compared them, and provided experience with practical application. This must-have book is a comprehensive resource that the practitioner will reference time and again.
Technical Paper

Optimization of High-Volume Warm Forming for Lightweight Sheet

2013-04-08
2013-01-1170
Traditional warm forming of aluminum refers to sheet forming in the temperature range of 200°C to 350°C using heated, matched die sets similar to conventional stamping. While the benefits of this process can include design freedom, improved dimensional capability and potentially reduced cycle times, the process is complex and requires expensive, heated dies. The objective of this work was to develop a warm forming process that both retains the benefits of traditional warm forming while allowing for the use of lower-cost tooling. Enhanced formability characteristics of aluminum sheet have been observed when there is a prescribed temperature difference between the die and the sheet; often referred to as a non-isothermal condition. This work, which was supported by the USCAR-AMD initiative, demonstrated the benefits of the non-isothermal warm forming approach on a full-scale door inner panel. Finite element analysis was used to guide the design of the die face and blank shape.
Technical Paper

Multi-Objectives Optimization of Fastener Location in a Bolted Joint

2013-04-08
2013-01-0966
During component development of multiple fastener bolted joints, it was observed that one or two fasteners had a higher potential to slip when compared to other fasteners in the same joint. This condition indicated that uneven distribution of the service loads was occurring in the bolted joints. The need for an optimization tool was identified that would take into account various objectives and constraints based on real world design conditions. The objective of this paper is to present a method developed to determine optimized multiple fastener locations within a bolted joint for achieving evenly distributed loads across the fasteners during multiple load events. The method integrates finite element analysis (FEA) with optimization software using multi-objective optimization algorithms. Multiple constraints were also considered for the optimization analysis. In use, each bolted joint is subjected to multiple service load conditions (load cases).
Technical Paper

Integrating Manufacturing Pre-Stress in FEA Based Road Load Fatigue Analysis

2013-04-08
2013-01-1204
Most manufacturing and assembly processes like stamping, clamping, interference fits introduce a pre-stress condition in components or assemblies. Very often these stresses are high enough and alter the mean stress state resulting in significant effect on fatigue life performance and thus cannot be ignored. If the pre-stress is compressive, it will increase the allowable stress range and improve fatigue life performance; on the other hand if these stresses are tensile, they will decrease the allowable stress range resulting in a degradation of fatigue life. At times it becomes critical to effectively introduce the pre-stress condition in order to accurately represent the stress state in an FEA based durability simulation. Accounting for the pre-stress state in FEA based constant amplitude loading fatigue life simulation is relatively straight forward, but when it comes to random variable amplitude multi-channel loads simulation, the problem becomes more complicated.
Book

Fundamentals of Automobile Body Structure Design

2011-03-14
This book provides readers with a solid understanding of the principles of automobile body structural design, illustrating the effect of changing design parameters on the behavior of automobile body structural elements. Emphasizing simple models of the behavior of body structural systems rather than complex mathematical models, the book looks at the best way to shape a structural element to achieve a desired function, why structures behave in certain ways, and how to improve performance.
Journal Article

Fatigue Life Prediction of an Automobile Cradle Mount

2013-04-08
2013-01-1009
Elastomers have large reversible elastic deformation, good damping and high energy absorption capabilities. Due to these characteristics along with low cost of manufacturing, elastomeric components are widely used in many industries and applications, including in automobiles. These components are typically subjected to complex multiaxial and variable amplitude cyclic loads during their service life. Therefore, fatigue failure and life prediction are important issues in the design and analyses of these components. Availability of an effective CAE technique to evaluate fatigue damage and to predict fatigue life under complex loading conditions is a valuable tool for such analysis. This paper discusses a general CAE analytical technique for durability analysis and life prediction of elastomeric components. The methodology is then illustrated and verified by using experimental fatigue test results from an automobile cradle mount.
Technical Paper

Fatigue Based Damage Analysis with Correlation to Customer Duty Cycle Using Design Reliability and Confidence

2010-04-12
2010-01-0200
This paper will define the process for correlating fatigue based customer duty cycle with laboratory bench test data. The process includes the development of the Median and Design Load-Life curve equations. The Median Load-Life curve is a best fit linear regression; whereas, the Design Load-Life curve incorporates component specific reliability and confidence targets. To account for the statistical distribution of fatigue life, due to sample size, the one-side lower-bound tolerance limit method ( Lieberman, 1958 ) will be utilized. This paper will include a correlation between the predicted design fatigue life and the actual product life.
Journal Article

Failure Modes of Friction Stir Spot Welds in Lap-Shear Specimens of Dissimilar Advanced High Strength Steels under Quasi-Static and Cyclic Loading Conditions

2012-04-16
2012-01-0479
Failure modes of friction stir spot welds in lap-shear specimens of dissimilar high strength dual phase steel (DP780GA) and hot stamped boron steel (HSBS) sheets are investigated under quasi-static and cyclic loading conditions based on experimental observations. Optical micrographs of dissimilar DP780GA/HSBS friction stir spot welds made by a concave tool before and after failure are examined. The micrographs indicate that the failure modes of the welds under quasi-static and cyclic loading conditions are quite similar. The micrographs show that the DP780GA/HSBS welds mainly fail from cracks growing through the upper DP780GA sheets where the concave tool was plunged into during the welding process. Based on the observed failure modes, a kinked fatigue crack growth model is adopted to estimate fatigue lives.
Journal Article

Estimation of Secondary Mass Changes in Vehicle Design

2013-04-08
2013-01-0655
It is well known that an unplanned component mass increase during vehicle design creates a ripple effect of changes throughout the vehicle subsystems, which require resizing for the additional mass. This in turn, increases overall vehicle mass. And the opposite is true in vehicle mass reduction where subsystem resizing is necessary to account for an initial mass reduction enabled, for example, by a new technology. These secondary mass changes can be significant and must be considered in the mass budgeting process due to their importance to fuel consumption and greenhouse gas emission assessments. Secondary mass reduction may be modeled using subsystem mass influence coefficients-the incremental change in subsystem mass for a unit change in gross vehicle mass. This paper focuses on means to estimate influence coefficients using two methods: Analytical and Regression.
Journal Article

Estimation of One-Sided Lower Tolerance Limits for a Weibull Distribution Using the Monte Carlo Pivotal Simulation Technique

2013-04-08
2013-01-0329
This paper introduces a methodology to calculate confidence bounds for a normal and Weibull distribution using Monte Carlo pivotal statistics. As an example, a ready-to-use lookup table to calculate one-sided lower confidence bounds is established and demonstrated for normal and Weibull distributions. The concept of one-sided lower tolerance limits for a normal distribution was first introduced by G. J. Lieberman in 1958 (later modified by Link in 1985 and Wei in 2012), and has been widely used in the automotive industry because of the easy-to-use lookup tables. Monte Carlo simulation methods presented here are more accurate as they eliminate assumptions and approximations inherent in existing approaches by using random experiments. This developed methodology can be used to generate confidence bounds for any parametric distribution. The ready-to-use table for the one-sided lower tolerance limits for a Weibull distribution is presented.
Journal Article

Elastic-Plastic Indentation and Flat Plate Rolling under Plane Strain Conditions

2011-04-12
2011-01-0035
In this paper, residual stresses due to single indentation and rolling on a finite plate at very high rolling loads are investigated by two-dimensional plane strain finite element analyses using ABAQUS. In the finite element analyses, the roller is modeled as rigid and has frictionless contact with the finite plate. The plate material is modeled as an elastic-plastic power-law strain hardening material with a non-linear kinematic hardening rule for loading and unloading. For indentation and rolling at high rolling loads with extensive plastic deformation, the computational results show that the contact pressure distributions are quite different and they are also significantly different from the elastic Hertzian pressure distribution. The computational results for the rolling case show a significantly higher longitudinal compressive residual stress and a lower out-of-plane compressive residual stress along the contact surface when compared to those for the single indentation case.
Journal Article

Effect of a Deformable Roller on Residual Stress Distribution for Elastic-Plastic Flat Plate Rolling under Plane Strain Conditions

2012-04-16
2012-01-0190
In this paper, the differences of the residual stresses due to rolling in a finite elastic-plastic plate by rigid and elastic deformable rollers at very high rolling loads are investigated by two-dimensional plane strain finite element analyses using ABAQUS. In the finite element analyses, the rollers are modeled both as rigid and linear elastic, and have frictionless contact with the elastic-plastic finite plate. The plate material is modeled as an elastic-plastic power-law strain hardening material with a non-linear kinematic hardening rule for loading and unloading. Two new numerical schemes are developed to represent the elastic roller to model the indentation and rolling. The results of the contact pressure and subsurface stress distributions from the two numerical schemes are almost identical.
Technical Paper

Developing the AC17 Efficiency Test for Mobile Air Conditioners

2013-04-08
2013-01-0569
Chrysler, Ford, General Motors, the U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (CARB) have collaborated over the past two years to develop an efficiency test for mobile air conditioner (MAC) systems. Because the effect of efficiency differences between different MAC systems and different technologies is relatively small compared to overall vehicle fuel consumption, quantifying these differences has been challenging. The objective of this program was to develop a single dynamic test procedure that is capable of discerning small efficiency differences, and is generally representative of mobile air conditioner usage in the United States. The test was designed to be conducted in existing test facilities, using existing equipment, and within a sufficiently short time to fit standard test facility scheduling. Representative ambient climate conditions for the U.S. were chosen, as well as other test parameters, and a solar load was included.
Technical Paper

Charge Motion Analysis to Guide Engine Port Development and Enhance Combustion Stability for High Cooled Exhaust Gas Recirculation

2013-04-08
2013-01-1313
CAE tools are increasingly important in the automotive design process. In part, CAE tools can be useful in reducing the number of physical prototypes required during a product development effort. CFD tools can assess and predict cylinder charge motion for proposed designs, thereby limiting the need for prototype work. Though detailed combustion simulation results could help guide product development, the time required for such simulations limits their usefulness in the context of a production program. However equally valuable information can be obtained from gas exchange analyses which require less computation time and are run only from Intake Valve opening (IVO) to spark timing. Chemical kinetics is not included in this type of analysis. Using this approach, large numbers of configurations can be evaluated in a short period of time. Every passing year automotive engineers are challenged to attain higher fuel economy targets.
X