Refine Your Search

Topic

Author

Search Results

Technical Paper

Wear Resistance of Lunar Wheel Treads Made of Polymeric Fabrics

2009-04-20
2009-01-0065
The purpose of this research is to characterize the wear resistance of wheel treads made of polymeric woven and non-woven fabrics. Experimental research is used to characterize two wear mechanisms: (1) external wear due to large sliding between the tread and rocks, and (2) external wear due to small sliding between the tread and abrasive sand. Experimental setups include an abrasion tester and a small-scale merry-go-round where the tread is attached to a deformable rolling wheel. The wear resistance is characterized using various measures including, quantitatively, by the number of cycles to failure, and qualitatively, by micro-visual inspection of the fibers’ surface. This paper describes the issues related to each experiment and discusses the results obtained with different polymeric materials, fabric densities and sizes. The predominant wear mechanism is identified and should then be used as one of the criteria for further design of the tread.
Technical Paper

Vehicle Seat Occupancy Detection and Classification Using Capacitive Sensing

2024-04-09
2024-01-2508
Improving passenger safety inside vehicle cabins requires continuously monitoring vehicle seat occupancy statuses. Monitoring a vehicle seat’s occupancy status includes detecting if the seat is occupied and classifying the seat’s occupancy type. This paper introduces an innovative non-intrusive technique that employs capacitive sensing and an occupancy classifier to monitor a vehicle seat’s occupancy status. Capacitive sensing is facilitated by a meticulously constructed capacitance-sensing mat that easily integrates with any vehicle seat. When a passenger or an inanimate object occupies a vehicle seat equipped with the mat, they will induce variations in the mat’s internal capacitances. The variations are, in turn, represented pictorially as grayscale capacitance-sensing images (CSI), which yield the feature vectors the classifier requires to classify the seat’s occupancy type.
Technical Paper

Use of Cellphones as Alternative Driver Inputs in Passenger Vehicles

2019-04-02
2019-01-1239
Automotive drive-by-wire systems have enabled greater mobility options for individuals with physical disabilities. To further expand the driving paradigm, a need exists to consider an alternative vehicle steering mechanism to meet specific needs and constraints. In this study, a cellphone steering controller was investigated using a fixed-base driving simulator. The cellphone incorporated the direction control of the vehicle through roll motion, as well as the brake and throttle functionality through pitch motion, a design that can assist disabled drivers by excluding extensive arm and leg movements. Human test subjects evaluated the cellphone with conventional vehicle control strategy through a series of roadway maneuvers. Specifically, two distinctive driving situations were studied: a) obstacle avoidance test, and b) city road traveling test. A conventional steering wheel with self-centering force feedback tuning was used for all the driving events for comparison.
Journal Article

Thermodynamic Modeling of Military Relevant Diesel Engines with 1-D Finite Element Piston Temperature Estimation

2023-04-11
2023-01-0103
In military applications, diesel engines are required to achieve high power outputs and therefore must operate at high loads. This high load operation leads to high piston component temperatures and heat rejection rates limiting the packaged power density of the powertrain. To help predict and understand these constraints, as well as their effects on performance, a thermodynamic engine model coupled to a finite element heat conduction solver is proposed and validated in this work. The finite element solver is used to calculate crank angle resolved, spatially averaged piston temperatures from in-cylinder heat transfer calculations. The calculated piston temperatures refine the heat transfer predictions as well requiring iteration between the thermodynamic model and finite element solver.
Technical Paper

Thermodynamic Analysis of Novel 4-2 Stroke Opposed Piston Engine

2021-09-05
2021-24-0096
In this work, a novel opposed piston architecture is proposed where one crankshaft rotates at twice the speed of the other. This results in one piston creating a 2-stroke profile and another with a 4-stroke profile. In this configuration, the slower piston operates in the 2-stroke CAD domain, while the faster piston completes 2 reciprocating cycles in the same amount of time (4-stroke). The key benefit of this cycle is that the 4-stroke piston increases the rate of compression and expansion (dV/dθ), which lowers the combustion-induced pressure rise rate after top dead center (crank angle location of minimum volume). Additionally, it lowers in-cylinder temperatures and pressures more rapidly, resulting in a lower residence time at high temperatures, which reduces residence time for thermal NOx formation and reduces the temperature differential between the gas and the wall, thereby reducing heat transfer.
Technical Paper

Thermal Modeling of Engine Components for Temperature Prediction and Fluid Flow Regulation

2001-03-05
2001-01-1014
The operation of internal combustion engines depend on the successful management of the fuel, spark, and cooling processes to ensure acceptable performance, emission levels, and fuel economy. Two different thermal management systems exist for engines - air and liquid cooling. Smaller displacement utility and spark ignition aircraft engines typically feature air cooled systems which rely on forced convection over the exterior engine surfaces. In contrast, passenger/light-duty engines use a water-ethylene glycol mixture which circulates through the radiator, water pump, and heater core. The regulation of the overall engine temperature, based on the coolant's temperature, has been achieved with the thermostat valve and (electric) radiator fan. To provide insight into the thermal behavior of the cylinder-head assembly for enhanced cooling system operation, a dynamic model must exist.
Technical Paper

The Ingress and Egress Strategies of Wheelchair Users Transferring Into and Out of Two Sedans

2018-04-03
2018-01-1321
The ability to independently transfer into and out of a vehicle is essential for many wheelchair users to achieve driving independence. The purpose of the current study is to build upon the previous exploratory study that investigated the transfer strategies of wheelchair users by observing YouTube videos. This observational study videotaped five wheelchair users transferring from their wheelchairs into two research vehicles, a small and mid-size sedan that were equipped with a 50mm grid. The goal of this study was to use these videos and vehicle grids to precisely identify ingress and egress motions as well as “touch points” in a controlled setting with a small sample of five male wheelchair users. Using the videos from multiple different camera perspectives, the participants’ ingress and egress transfers were coded, documenting the touch points and step-by-step action sequences.
Technical Paper

Testing a Formula SAE Racecar on a Seven-Poster Vehicle Dynamics Simulator

2002-12-02
2002-01-3309
Vehicle dynamics simulation is one of the newest and most valuable technologies being applied in the racing world today. Professional designers and race teams are investing heavily to test and improve the dynamics of their suspension systems through this new technology. This paper discusses the testing of one of Clemson University's most recent Formula SAE racecars on a seven-poster vehicle dynamics simulator; commonly known as a “shaker rig.” Testing of the current dampers using a shock dynamometer was conducted prior to testing and results are included for further support of conclusions. The body of the paper is a discussion of the setup and testing procedures involved with the dynamic simulator. The results obtained from the dynamic simulator tests are then analyzed in conjunction with the shock dynamometer results. Conclusions are formed from test results and methods for future improvements to be applied in Formula SAE racing are suggested.
Journal Article

Strain Rate Effect on Martensitic Transformation in a TRIP Steel Containing Carbide-Free Bainite

2019-04-02
2019-01-0521
Adiabatic heating during plastic straining can slow the diffusionless shear transformation of austenite to martensite in steels that exhibit transformation induced plasticity (TRIP). However, the extent to which the transformation is affected over a strain rate range of relevance to automotive stamping and vehicle impact events is unclear for most third-generation advanced high strength TRIP steels. In this study, an 1180MPa minimum tensile strength TRIP steel with carbide-free bainite is evaluated by measuring the variation of retained austenite volume fraction (RAVF) in fractured tensile specimens with position and strain. This requires a combination of servo-hydraulic load frame instrumented with high speed stereo digital image correlation for measurement of strains and ex-situ synchrotron x-ray diffraction for determination of RAVF in fractured tensile specimens.
Technical Paper

Smart Thermostat and Coolant Pump Control for Engine Thermal Management Systems

2003-03-03
2003-01-0272
The introduction of mechatronic components into thermal-mechanical systems provides an opportunity to apply real time control strategies for enhanced engine performance. The traditional automotive thermal management system contains the engine, thermostat, air cooled radiator, and centrifugal pump driven by the crankshaft belt. A servo-motor valve and pump may be inserted into the vehicle's heating/cooling system to regulate the coolant flow with the engine control unit. To study these dual actuators, a scale experimental cooling system has been investigated. This automotive inspired thermal system contains a heater, smart thermostat valve, radiator, and variable speed electric pump. A lumped parameter model has been developed to describe the system's behavioral response and establish the basis for temperature regulation. Real time control algorithms are introduced for the synchronous regulation of the valve and pump.
Technical Paper

Pointing Gesture Based Point of Interest Identification in Vehicle Surroundings

2018-04-03
2018-01-1094
This article presents a pointing gesture-based point of interest computation method via pointing rays’ intersections for situated awareness interactions in vehicles. The proposed approach is compared with two alternative methods: (a) a point of interest identification method based on the intersection of the pointing ray with the point cloud (PoC) resulting from the vehicle sensors, and (b) the traditional ray-casting approach, where the point of interest is computed based on the first intersection of the pointing rays with locations stored in a 2D annotated map. Simulation results show that the presented method outperforms by 36.25% the traditional ray casting one. However, as it was expected, the sensor-based computation method is more accurate. The validation of our approach was conducted by experiments performed in a test track facility.
Technical Paper

Physics-Based Exhaust Pressure and Temperature Estimation for Low Pressure EGR Control in Turbocharged Gasoline Engines

2016-04-05
2016-01-0575
Low pressure (LP) and cooled EGR systems are capable of increasing fuel efficiency of turbocharged gasoline engines, however they introduce control challenges. Accurate exhaust pressure modeling is of particular importance for real-time feedforward control of these EGR systems since they operate under low pressure differentials. To provide a solution that does not depend on physical sensors in the exhaust and also does not require extensive calibration, a coupled temperature and pressure physics-based model is proposed. The exhaust pipe is split into two different lumped sections based on flow conditions in order to calculate turbine-outlet pressure, which is the driving force for LP-EGR. The temperature model uses the turbine-outlet temperature as an input, which is known through existing engine control models, to determine heat transfer losses through the exhaust.
Technical Paper

Optimization of a Military Ground Vehicle Engine Cooling System Heat Exchanger - Modeling and Size Scaling

2017-03-28
2017-01-0259
Heat rejection in ground vehicle propulsion systems remains a challenge given variations in powertrain configurations, driving cycles, and ambient conditions as well as space constraints and available power budgets. An optimization strategy is proposed for engine radiator geometry size scaling to minimize the cooling system power consumption while satisfying both the heat removal rate requirement and the radiator dimension size limitation. A finite difference method (FDM) based on a heat exchanger model is introduced and utilized in the optimization design. The optimization technique searches for the best radiator core dimension solution over the design space, subject to different constraints. To validate the proposed heat exchanger model and optimization algorithm, a heavy duty military truck engine cooling system is investigated.
Journal Article

Numerical Investigation of Phase Change Materials for Thermal

2009-04-20
2009-01-0171
Phase change materials (PCMs) are extensively used in many engineering areas for thermal management purposes. This paper investigated the application of PCMs for vehicular systems, especially for the thermal protection of vehicle lighting systems based on light emitting diodes (LEDs). Lighting systems based on LEDs offer many advantages, however, also pose a smaller margin of error for thermal management. This paper analyzed the combined use of PCMs with metal foam for cooling systems. The cooling performance was studied numerically under different porosity values of the metal foam, and different boundary conditions. The cooling performance was also compared to a solid metal sink system (SMS) and was found to offer several distinct cooling characteristics.
Technical Paper

Multiple Heat Exchangers for Automotive Systems - A Design Tool

2022-03-29
2022-01-0180
A single radiator cooling system architecture has been widely applied in ground vehicles for safe equipment (e.g., engine block, electronics, and motors) temperature control. The introduction of multiple smaller heat exchangers provides additional energy management features and alternate pathways for continued operation in case of critical subsystem failure. Although cooling performance is often designed for maximum thermal loads, systems typically operate at a fraction of the peak values for most of their life cycle. In this project, a two-radiator configuration with variable flow rates and valve positions has been mathematically modelled and experimentally validated to study its performance feasibility. A multi-node resistance-capacitance thermal model was derived using the ε−NTU approach with accompanying convective and conductive heat transfer pathways within the system.
Technical Paper

Multi-Objective Design Optimization of an Electric Motor Thermal Management System for Autonomous Vehicles

2021-04-06
2021-01-0257
The integration of electric motors into ground vehicle propulsion systems requires the effective removal of heat from the motor shell. As the torque demand varies based on operating cycles, the generated heat from the motor windings and stator slots must be rejected to the surroundings to ensure electric machine reliability. In this paper, an electric motor cooling system design will be optimized for a light duty autonomous vehicle. The design variables include the motor cradle volume, the number of heat pipes, the coolant reservoir dimensions, and the heat exchanger size while the cost function represents the system weight, overall size, and performance. The imposed requirements include the required heat transfer per operating cycle (6, 9, 12kW) and vehicle size, component durability requirement, and material selection. The application of a nonlinear optimization package enabled the cooling system design to be optimized.
Technical Paper

Modeling the Effect of Thermal Barrier Coatings on HCCI Engine Combustion Using CFD Simulations with Conjugate Heat Transfer

2019-04-02
2019-01-0956
Thermal barrier coatings with low conductivity and low heat capacity have been shown to improve the performance of homogeneous charge compression ignition (HCCI) engines. These coatings improve the combustion process by reducing heat transfer during the hot portion of the engine cycle without the penalty thicker coatings typically have on volumetric efficiency. Computational fluid dynamic simulations with conjugate heat transfer between the in-cylinder fluid and solid piston of a single cylinder HCCI engine with exhaust valve rebreathing are carried out to further understand the impacts of these coatings on the combustion process. For the HCCI engine studied with exhaust valve rebreathing, it is shown that simulations needed to be run for multiple engine cycles for the results to converge given how sensitive the rebreathing process is to the residual gas state.
Technical Paper

Modeling and Validation of Automotive “Smart” Thermal Management System Architectures

2004-03-08
2004-01-0048
The functionality and performance of an internal combustion (spark or compression ignition) engine's thermal management system can be significantly enhanced through the application of mechatronics technology. The replacement of the conventional thermostat valve and mechanical coolant pump in the heating/cooling system by a servo-motor driven smart valve and variable flow pump permits powertrain control module regulated coolant flow through the engine block and radiator. In this paper, a dynamic mathematical model will be created for a 4.6L spark ignition engine to analyze various thermal management system architectures. The designs to be studied include the factory configuration, a smart valve upgrade, and the smart valve combined with a variable flow pump and radiator fan. Representative results are presented and discussed to demonstrate improvements in the engine warm-up time, temperature tracking, and component power consumption.
Technical Paper

Machine Learning Approach for Open Circuit Fault Detection and Localization in EV Motor Drive Systems

2024-04-09
2024-01-2790
Semiconductor devices in electric vehicle (EV) motor drive systems are considered the most fragile components with a high occurrence rate for open circuit fault (OCF). Various signal-based and model-based methods with explicit mathematical models have been previously published for OCF diagnosis. However, this proposed work presents a model-free machine learning (ML) approach for a single-switch OCF detection and localization (DaL) for a two-level, three-phase inverter. Compared to already available ML models with complex feature extraction methods in the literature, a new and simple way to extract OCF feature data with sufficient classification accuracy is proposed. In this regard, the inherent property of active thermal management (ATM) based model predictive control (MPC) to quantify the conduction losses for each semiconductor device in a power converter is integrated with an ML network.
Journal Article

Integration of Autonomous Vehicle Frameworks for Software-in-the-Loop Testing

2020-04-14
2020-01-0709
This paper presents an approach for performing software in the loop testing of autonomous vehicle software developed in the Autoware framework. Autoware is an open source software for autonomous driving that includes modules such as localization, detection, prediction, planning and control [8]. Multitudes of autonomous driving frameworks exist today, each having its own pros and cons. Often, MATLAB-Simulink is used for rapid prototyping, system modeling and testing, specifically for the lower-level vehicle dynamics and powertrain control features. For the autonomous software, the Robotic Operating System (ROS) is more commonly used for integrating distributed software components so that they can easily share information through a publish and subscribe paradigm. Thorough testing and evaluation of such complex, distributed software, implemented on a physical vehicle poses significant challenges in terms of safety, time, and cost, especially when considering rare edge cases.
X