Refine Your Search

Topic

Author

Search Results

Technical Paper

The Effect of Diesel Sulfur Content and Oxidation Catalysts on Transient Emissions at High Altitude from a 1995 Detroit Diesel Series 50 Urban Bus Engine

1996-10-01
961974
Regulated emissions (THC, CO, NOx, and PM) and particulate SOF and sulfate fractions were determined for a 1995 Detroit Diesel Series 50 urban bus engine at varying fuel sulfur levels, with and without catalytic converters. When tested on EPA certification fuel without an oxidation catalyst this engine does not appear to meet the 1994 emissions standards for heavy duty trucks, when operating at high altitude. An ultra-low (5 ppm) sulfur diesel base stock with 23% aromatics and 42.4 cetane number was used to examine the effect of fuel sulfur. Sulfur was adjusted above the 5 ppm level to 50, 100, 200, 315 and 500 ppm using tert-butyl disulfide. Current EPA regulations limit the sulfur content to 500 ppm for on highway fuel. A low Pt diesel oxidation catalyst (DOC) was tested with all fuels and a high Pt diesel oxidation catalyst was tested with the 5 and 50 ppm sulfur fuels.
Journal Article

Selection Criteria and Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Advanced Spark-Ignition Engines

2017-03-28
2017-01-0868
We describe a study to identify potential biofuels that enable advanced spark ignition (SI) engine efficiency strategies to be pursued more aggressively. A list of potential biomass-derived blendstocks was developed. An online database of properties and characteristics of these bioblendstocks was created and populated. Fuel properties were determined by measurement, model prediction, or literature review. Screening criteria were developed to determine if a bioblendstock met the requirements for advanced SI engines. Criteria included melting point (or cloud point) < -10°C and boiling point (or T90) <165°C. Compounds insoluble or poorly soluble in hydrocarbon were eliminated from consideration, as were those known to cause corrosion (carboxylic acids or high acid number mixtures) and those with hazard classification as known or suspected carcinogens or reproductive toxins.
Journal Article

Review: Fuel Volatility Standards and Spark-Ignition Vehicle Driveability

2016-03-14
2016-01-9072
Spark-ignition engine fuel standards have been put in place to ensure acceptable hot and cold weather driveability (HWD and CWD). Vehicle manufacturers and fuel suppliers have developed systems that meet our driveability requirements so effectively that drivers overwhelmingly find that their vehicles reliably start up and operate smoothly and consistently throughout the year. For HWD, fuels that are too volatile perform more poorly than those that are less volatile. Vapor lock is the apparent cause of poor HWD, but there is conflicting evidence in the literature as to where in the fuel system it occurs. Most studies have found a correlation between degraded driveability and higher dry vapor pressure equivalent or lower TV/L = 20, and less consistently with a minimum T50. For CWD, fuels with inadequate volatility can cause difficulty in starting and rough operation during engine warmup.
Technical Paper

Regulated and Unregulated Exhaust Emissions Comparison for Three Tier II Non-Road Diesel Engines Operating on Ethanol-Diesel Blends

2005-05-11
2005-01-2193
Regulated and unregulated emissions (individual hydrocarbons, ethanol, aldehydes and ketones, polynuclear aromatic hydrocarbons (PAH), nitro-PAH, and soluble organic fraction of particulate matter) were characterized in engines utilizing duplicate ISO 8178-C1 eight-mode tests and FTP smoke tests. Certification No. 2 diesel (400 ppm sulfur) and three ethanol/diesel blends, containing 7.7 percent, 10 percent, and 15 percent ethanol, respectively, were used. The three, Tier II, off-road engines were 6.8-L, 8.1-L, and 12.5-L in displacement and each had differing fuel injection system designs. It was found that smoke and particulate matter emissions decreased with increasing ethanol content. Changes to the emissions of carbon monoxide and oxides of nitrogen varied with engine design, with some increases and some decreases. As expected, increasing ethanol concentration led to higher emissions of acetaldehyde (increases ranging from 27 to 139 percent).
Technical Paper

Rapid Deactivation of Lean-Burn Natural Gas Engine Exhaust Oxidation Catalysts

1996-10-01
961976
Methane emissions from lean-burn natural gas engines can be relatively high. As natural gas fueled vehicles become more prevalent, future regulations may restrict these emissions. Preliminary reports indicated that conventional, precious metal oxidation catalysts rapidly deactivate (in less than 50 hours) in lean-burn natural gas engine exhaust. This investigation is directed at quantifying this catalyst deactivation and understanding its cause. The results may also be relevant to oxidation of lean-burn propane and gasoline engine exhaust. A platinum/palladium on alumina catalyst and a palladium on alumina catalyst were aged in the exhaust of a lean-burn natural gas engine (Cummins B5.9G). The engine was fueled with compressed natural gas. Catalyst aging was accomplished through a series of steady state cycles and heavy-duty transient tests (CFR 40 Part 86 Subpart N) lasting 10 hours. Hydrocarbons in the exhaust were speciated by gas chromatography.
Journal Article

Knock Resistance and Fine Particle Emissions for Several Biomass-Derived Oxygenates in a Direct-Injection Spark-Ignition Engine

2016-04-05
2016-01-0705
Several high octane number oxygenates that could be derived from biomass were blended with gasoline and examined for performance properties and their impact on knock resistance and fine particle emissions in a single cylinder direct-injection spark-ignition engine. The oxygenates included ethanol, isobutanol, anisole, 4-methylanisole, 2-phenylethanol, 2,5-dimethyl furan, and 2,4-xylenol. These were blended into a summertime blendstock for oxygenate blending at levels ranging from 10 to 50 percent by volume. The base gasoline, its blends with p-xylene and p-cymene, and high-octane racing gasoline were tested as controls. Relevant gasoline properties including research octane number (RON), motor octane number, distillation curve, and vapor pressure were measured. Detailed hydrocarbon analysis was used to estimate heat of vaporization and particulate matter index (PMI). Experiments were conducted to measure knock-limited spark advance and particulate matter (PM) emissions.
Technical Paper

Influence of Fuel Aromatics Type on the Particulate Matter and NOx Emissions of a Heavy-Duty Diesel Engine

2000-06-19
2000-01-1856
The influence of fuel aromatics type on the particulate matter (PM) and NOx exhaust emissions of a heavy-duty, single-cylinder, DI diesel engine was investigated. Eight fuels were blended from conventional and oil sands crude oil sources to form five fuel pairs with similar densities but with different poly-aromatic (1.6 to 14.6%) or total aromatic (14.3 to 39.0%) levels. The engine was tuned to meet the U.S. EPA 1994 emission standards. An eight-mode, steady-state simulation of the U.S. EPA heavy-duty transient test procedure was followed. The experimental results show that there were no statistically significant differences in the PM and NOx emissions of the five fuel pairs after removing the fuel sulphur content effect on PM emissions. However, there was a definite trend towards higher NOx emissions as the fuel density, poly-aromatic and total aromatic levels of the test fuels increased.
Technical Paper

In-Use Emissions from Natural Gas Fueled Heavy-Duty Vehicles

1999-05-03
1999-01-1507
The objective of the work described here is to test the performance of closed-loop controlled, heavy-duty CNG engines in-use, on fuels of different methane content; and to compare their performance with similar diesel vehicles. Performance is measured in terms of pollutant emissions, fuel economy, and driveability. To achieve this objective, three buses powered by closed-loop controlled, dedicated natural gas engines were tested on the heavy-duty chassis dynamometer facility at the Colorado Institute for Fuels and High Altitude Engine Research (CIFER). Emissions of regulated pollutants (CO, NOx, PM, and THC or NMHC), as well as emissions of alde-hydes for some vehicles, are reported. Two fuels were employed: a high methane fuel (90%) and a low methane fuel (85%). It was found that the NOx, CO, and PM emissions for a given cycle and vehicle are essentially constant for different methane content fuels.
Journal Article

Impacts of Biodiesel Fuel Blends Oil Dilution on Light-Duty Diesel Engine Operation

2009-06-15
2009-01-1790
Increasing interest in biofuels—specifically, biodiesel as a pathway to energy diversity and security—have necessitated the need for research on the performance and utilization of these fuels and fuel blends in current and future vehicle fleets. One critical research area is related to achieving a full understanding of the impact of biodiesel fuel blends on advanced emission control systems. In addition, the use of biodiesel fuel blends can degrade diesel engine oil performance and impact the oil drain interval requirements. There is limited information related to the impact of biodiesel fuel blends on oil dilution. This paper assesses the oil dilution impacts on an engine operating in conjunction with a diesel particle filter (DPF), oxides of nitrogen (NOx) storage, a selective catalytic reduction (SCR) emission control system, and a 20% biodiesel (soy-derived) fuel blend.
Technical Paper

Impact of Fuel Metal Impurities on the Durability of a Light-Duty Diesel Aftertreatment System

2013-04-08
2013-01-0513
Alkali and alkaline earth metal impurities found in diesel fuels are potential poisons for diesel exhaust catalysts. Using an accelerated aging procedure, a set of production exhaust systems from a 2011 Ford F250 equipped with a 6.7L diesel engine have been aged to an equivalent of 150,000 miles of thermal aging and metal exposure. These exhaust systems included a diesel oxidation catalyst (DOC), selective catalytic reduction (SCR) catalyst, and diesel particulate filter (DPF). Four separate exhaust systems were aged, each with a different fuel: ULSD containing no measureable metals, B20 containing sodium, B20 containing potassium and B20 containing calcium. Metals levels were selected to simulate the maximum allowable levels in B100 according to the ASTM D6751 standard. Analysis of the aged catalysts included Federal Test Procedure emissions testing with the systems installed on a Ford F250 pickup, bench flow reactor testing of catalyst cores, and electron probe microanalysis (EPMA).
Journal Article

Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties

2009-11-02
2009-01-2769
The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and1H/13C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT™) apparatus.
Technical Paper

Fuel Property Effects of a Broad Range of Potential Biofuels on Mixing Control Compression Ignition Engine Performance and Emissions

2021-04-06
2021-01-0505
Conventional diesel engines will continue to hold a vital role in the heavy- and medium-duty markets for the transportation of goods along with many other uses. The ability to offset traditional diesel fuels with low-net-carbon biofuels could have a significant impact on reducing the carbon footprint of these vehicles. A prior study screened several hundred candidate biofuel blendstocks based on required diesel blendstock properties and identified 12 as the most promising. Eight representative biofuel blendstocks were blended at a 30% volumetric concentration with EPA certification ultra-low-sulfur diesel (ULSD) and were investigated for emissions and fuel efficiency performance. This study used a single cylinder engine (based on the Ford 6.7L engine) using Conventional Diesel Combustion (CDC), also known as Mixing Control Compression Ignition (MCCI). The density, cetane number, distillation curve and sooting tendency (using the yield sooting index method) of the fuels were measured.
Journal Article

Exploring the Relationship Between Octane Sensitivity and Heat-of-Vaporization

2016-04-05
2016-01-0836
The latent heat-of-vaporization (HoV) of blends of biofuel and hydrocarbon components into gasolines has recently experienced expanded interest because of the potential for increased HoV to increase fuel knock resistance in direct-injection (DI) engines. Several studies have been conducted, with some studies identifying an additional anti-knock benefit from HoV and others failing to arrive at the same conclusion. Consideration of these studies holistically shows that they can be grouped according to the level of fuel octane sensitivity variation within their fuel matrices. When comparing fuels of different octane sensitivity significant additional anti-knock benefits associated with HoV are sometimes observed. Studies that fix the octane sensitivity find that HoV does not produce additional anti-knock benefit. New studies were performed at ORNL and NREL to further investigate the relationship between HoV and octane sensitivity.
Journal Article

Expanding the Experimental Capabilities of the Ignition Quality Tester for Autoigniting Fuels

2010-04-12
2010-01-0741
This paper reports the development of new fuel ignition quality and combustion experiments performed using the Ignition Quality Tester (IQT). Prior SAE papers (961182, 971636, 1999-01-3591, and 2001-01-3527) documented the development of the IQT constant volume combustion chamber experimental apparatus to measure ignition qualities of diesel-type fuels. The ASTM International test method D6890 was developed around the IQT device to allow the rapid determination of derived cetane number (DCN). Interest in chemical kinetic models for the ignition of diesel and biodiesel model compounds is increasing to support the development of advanced engines and fuels. However, rigorous experimental validation of these kinetic models has been limited for a variety of reasons. Shock tubes and rapid compression machines are typically limited to premixed gas-phase studies, for example.
Journal Article

Evaluation of Fuel-Borne Sodium Effects on a DOC-DPF-SCR Heavy-Duty Engine Emission Control System: Simulation of Full-Useful Life

2016-10-17
2016-01-2322
For renewable fuels to displace petroleum, they must be compatible with emissions control devices. Pure biodiesel contains up to 5 ppm Na + K and 5 ppm Ca + Mg metals, which have the potential to degrade diesel emissions control systems. This study aims to address these concerns, identify deactivation mechanisms, and determine if a lower limit is needed. Accelerated aging of a production exhaust system was conducted on an engine test stand over 1001 h using 20% biodiesel blended into ultra-low sulfur diesel (B20) doped with 14 ppm Na. This Na level is equivalent to exposure to Na at the uppermost expected B100 value in a B20 blend for the system full-useful life. During the study, NOx emissions exceeded the engine certification limit of 0.33 g/bhp-hr before the 435,000-mile requirement.
Technical Paper

Emissions from Heavy-Duty Diesel Engine with EGR using Fuels Derived from Oil Sands and Conventional Crude

2003-10-27
2003-01-3144
The exhaust emissions from a single-cylinder version of a heavy-duty diesel engine with exhaust gas recirculation (EGR) were studied using 12 diesel fuels derived from oil sands and conventional sources. The test fuels were blended from 22 refinery streams to produce four fuels (two from each source) at three different total aromatic levels (10, 20, and 30% by mass). The cetane numbers were held constant at 43. Exhaust emissions were measured using the AVL eight-mode steady-state test procedure. PM emissions were accurately modeled by a single regression equation with two predictors, total aromatics and sulphur content. Sulphate emissions were found to be independent of the type of sulphur compound in the fuel. NOx emissions were accurately modeled by a single regression equation with total aromatics and density as predictor variables. PM and NOx emissions were significantly significantly affected by fuel properties, but crude oil source did not play a role.
Technical Paper

Effects of Heat of Vaporization and Octane Sensitivity on Knock-Limited Spark Ignition Engine Performance

2018-04-03
2018-01-0218
Knock-limited loads for a set of surrogate gasolines all having nominal 100 research octane number (RON), approximately 11 octane sensitivity (S), and a heat of vaporization (HOV) range of 390 to 595 kJ/kg at 25°C were investigated. A single-cylinder spark-ignition engine derived from a General Motors Ecotec direct injection (DI) engine was used to perform load sweeps at a fixed intake air temperature (IAT) of 50 °C, as well as knock-limited load measurements across a range of IATs up to 90 °C. Both DI and pre-vaporized fuel (supplied by a fuel injector mounted far upstream of the intake valves and heated intake runner walls) experiments were performed to separate the chemical and thermal effects of the fuels’ knock resistance. The DI load sweeps at 50°C intake air temperature showed no effect of HOV on the knock-limited performance. The data suggest that HOV acts as a thermal contributor to S under the conditions studied.
Technical Paper

Effects of Cetane Number, Aromatic Content and 90% Distillation Temperature on HCCI Combustion of Diesel Fuels

2010-10-25
2010-01-2168
The effects of cetane number, aromatics content and 90% distillation temperature (T90) on HCCI combustion were investigated using a fuel matrix designed by the Fuels for Advanced Combustion Engines (FACE) Working Group of the Coordinating Research Council (CRC). The experiments were conducted in a single-cylinder, variable compression ratio, Cooperative Fuel Research (CFR) engine. The fuels were atomized and partially vaporized in the intake manifold. The engine was operated at a relative air/fuel ratio of 1.2, 60% exhaust gas recirculation (EGR) and 900 rpm. The compression ratio was varied over the range of 9:1 to 15:1 to optimize the combustion phasing for each fuel, keeping other operating parameters constant. The results show that cetane number and T90 distillation temperature significantly affected the combustion phasing. Cetane number was clearly found to have the strongest effect.
Technical Paper

Effect of Fuel Composition and Altitude on Regulated Emissions from a Lean-Burn, Closed Loop Controlled Natural Gas Engine

1997-05-01
971707
Natural gas presents several challenges to engine manufacturers for use as a heavy-duty, lean burn engine fuel. This is because natural gas can vary in composition and the variation is large enough to produce significant changes in the stoichiometry of the fuel and its octane number. Similarly, operation at high altitude can present challenges. The most significant effect of altitude is lower barometric pressure, typically 630 mm Hg at 1600 m compared to a sea level value of 760 mm. This can lower turbocharger boost at low speeds leading to mixtures richer than desired. The purpose of this test program was to determine the effect of natural gas composition and altitude on regulated emissions and performance of a Cummins B5.9G engine. The engine is a lean-burn, closed loop control, spark ignited, dedicated natural gas engine. For fuel composition testing the engine was operating at approximately 1600 m (5,280 ft) above sea level.
Technical Paper

Effect of Diesel Fuel Chemistry on Regulated Emissions at High Altitude

1996-10-01
961947
The effect of diesel cetane number, total aromatic content T90, and fuel nitrogen content on regulated emissions (HC, CO, NOx, and PM) from a 1991 DDC Series 60 engine were measured Emissions tests were conducted using the EPA heavy-duty transient test (CFR 40 Part 86 Subpart N) at a laboratory located 5,280 feet (1609 m) above sea level. The objective of this work was to determine if the effect of fuel chemistry at high altitude is similar to what is observed at sea level and to examine the effect of specific fuel chemistry variables on emissions. An initial tea series was conducted to examine the effect of cetane number and aromatics. Transient emissions for this test series indicated much higher (50 to 75%) particulate emissions at high altitude than observed on the same model engine and similar fuels at sea level.
X