Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Vehicle Exhaust Treatment Using Electrical Discharge Methods

1997-05-01
971716
The destruction of low concentrations (<600 ppm) of nitric oxide using a low-temperature, dielectric barrier/packed-bed corona reactor has been studied. We compare the chemistry and energy efficiencies observed using various packing materials in warm moist air under oxidative (lean-burn) conditions. Measurements of NO and NOx removal in the effluent gas were made as a function of energy dissipated in the reactor. Changes in the observed fate of NO as a function of the packing material are discussed.
Technical Paper

The Formability of Friction Stir Welds in Automotive Stamping Environments

2005-04-11
2005-01-1258
Automobile body and truck cab structures are composed primarily of stampings formed from monolithic and constant gage blanks. Cost and weight penalties can arise when strength or other requirements in one small area of the part leads to the use of a material or gage that is overmatched to the needs of the rest of the stamping. Tailor Welded Blanks (TWBs) are hybrid sheet products composed of either different materials or different thickness sheets that are joined together, then subjected to a stamping operation to create a formed assembly. The strategy is employed generally to save weight and material costs in the formed assembly by placing higher strength or thicker sections only where needed. The forming or stamping process requires the joint to be severely deformed along with the parent sheets. Aluminum TWBs for automotive applications are particularly problematic because of the low formability of aluminum weld metal.
Technical Paper

The Effects of Hydroforming on the Mechanical Properties and Crush Behaviors of Aluminum Tubes

2007-04-16
2007-01-0986
The effect of hydroforming on the mechanical properties and dynamic crush behaviors of tapered aluminum 6063-T4 tubes with octagonal cross section are investigated by experiments. First, the thickness profile of the hydroformed tube is measured by non-destructive examination technique using ultrasonic thickness gauge. The effect of hydroforming on the mechanical properties of the tube is investigated by quasi-static tensile tests of specimens prepared from different regions of the tube based on the thickness profile. The effect of hydroforming on the dynamic crush behaviors of the tube is investigated by axial crush tests under dynamic loads. Specimens and tubes are tested in two different heat treatment conditions: hydroformed-T4 (as-received) and T6. The results of the quasi-static tensile tests for the specimens in hydroformed-T4 condition show different amounts of work hardening depending on the regions, which the specimens are prepared from.
Technical Paper

The Chemistry, Properties, and HCCI Combustion Behavior of Refinery Streams Derived from Canadian Oil Sands Crude

2008-10-06
2008-01-2406
Diesel fuels derived from different types of crude oil can exhibit different chemistry while still meeting market requirements and specifications. Oil sands derived fuels typically contain a larger proportion of cycloparaffinic compounds, which result from the cracking and hydrotreating of bitumens in the crude. In the current study, 17 refinery streams consisting of finished fuels and process streams were obtained from a refinery using 100% oil sands derived crude oil. All samples except one met the ULSD standard of 15 ppm sulfur. The samples were characterized for properties and chemistry and run in a simple premixed HCCI engine using intake heating for combustion phasing control. Results indicate that the streams could be equally well characterized by chemistry or properties, and some simple correlations are presented. Cetane number was found to relate mainly to mono-aromatic content and the cycloparaffins did not appear to possess any unique diesel related chemical effects.
Technical Paper

Tensile Properties of Steel Tubes for Hydroforming Applications

2004-03-08
2004-01-0512
With the increased use of tubular steel products, especially for automotive hydroforming applications, there is increased interest in understanding the mechanical properties measured by tensile tests from specimens of different orientations in the tube. In this study, two orientations of tensile specimens were evaluated -- axial specimens with and without flattening and flattened circumferential specimens. Three steels were evaluated -- two thicknesses of aluminum killed drawing quality (AKDQ) steel and one thickness of high strength low alloy (HSLA) steel. Mechanical property data were obtained from the flat stock, conventional production tubes and quasi tubes. Quasi tubes were produced from the flat stock on a 3-roll bender, but the quasi tube was not welded or sized.
Technical Paper

Steady-State Engine Testing of γ-Alumina Catalysts Under Plasma Assist for NOx Control in Heavy-Duty Diesel Exhaust

2003-03-03
2003-01-1186
A slipstream of exhaust from a Caterpillar 3126B engine was diverted into a plasma-catalytic NOx control system in the space velocity range of 7,000 to 100,000 hr-1. The stream was first fed through a non-thermal plasma that was formed in a coaxial cylinder dielectric barrier discharge reactor. Plasma treated gas was then passed over a catalyst bed held at constant temperature in the range of 573 to 773 K. Catalysts examined consisted of γ-alumina, indium-doped γ-alumina, and silver-doped γ-alumina. Road and rated load conditions resulted in engine out NOx levels of 250 - 600 ppm. The effects of hydrocarbon level, catalyst temperature, and space velocity are discussed where propene and in one case ultra-low sulfur diesel fuel (late cycle injection) were the reducing agents used for NOx reduction. Results showed NOx reduction in the range of 25 - 97% depending on engine operating conditions and management of the catalyst and slipstream conditions.
Technical Paper

Sheet Thinning during Plane-Strain Bending

2009-04-20
2009-01-1394
Knowledge of the net thinning strain that occurs in a sheet as it is bent over a single radius is an important component in understanding sheet metal formability. The present study extends the initial work of Swift on thinning during plane-strain bending to sheet steels with power law stress-strain behavior and with the inclusion of friction. The experimental data come from studies on the enhanced forming limit curve on DQSK steel and analysis of the curl behavior of 590R and DP600 steels. Results for single radius bending from these studies are used in the present investigation. It has been found that the amount of net thinning strain depends on back tension, initial plane-strain yield strength, and the maximum true bending strain calculated for the neutral plane at the mid-thickness of the sheet.
Technical Paper

Sensitivity Analysis of Hybrid Electric Vehicle Designs

1996-08-01
961658
In hybrid electric vehicle (HEV) design and operation, no parameter plays a more important role than efficiency. Unlike conventional vehicles, HEVs are generally energy and power limited by the battery bank and auxiliary power unit. As a result, the overall system efficiency in the conversion of chemical or stored energy into kinetic energy of the vehicle is the key parameter that drives the overall system design. We have undertaken a sensitivity analysis of HEVs to understand in detail the various factors and their respective weights that affect the overall system efficiency. Our goal is to identify the parameters that most significantly influence vehicle efficiency. The results of this study may be used as a guide to focus work on the areas of most benefit for HEVs as well as aiding in sizing vehicle components for maximum efficiency.
Journal Article

Selection Criteria and Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Advanced Spark-Ignition Engines

2017-03-28
2017-01-0868
We describe a study to identify potential biofuels that enable advanced spark ignition (SI) engine efficiency strategies to be pursued more aggressively. A list of potential biomass-derived blendstocks was developed. An online database of properties and characteristics of these bioblendstocks was created and populated. Fuel properties were determined by measurement, model prediction, or literature review. Screening criteria were developed to determine if a bioblendstock met the requirements for advanced SI engines. Criteria included melting point (or cloud point) < -10°C and boiling point (or T90) <165°C. Compounds insoluble or poorly soluble in hydrocarbon were eliminated from consideration, as were those known to cause corrosion (carboxylic acids or high acid number mixtures) and those with hazard classification as known or suspected carcinogens or reproductive toxins.
Journal Article

Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Mixing Controlled Compression Ignition Combustion

2019-04-02
2019-01-0570
Mixing controlled compression ignition, i.e., diesel engines are efficient and are likely to continue to be the primary means for movement of goods for many years. Low-net-carbon biofuels have the potential to significantly reduce the carbon footprint of diesel combustion and could have advantageous properties for combustion, such as high cetane number and reduced engine-out particle and NOx emissions. We developed a list of over 400 potential biomass-derived diesel blendstocks and populated a database with the properties and characteristics of these materials. Fuel properties were determined by measurement, model prediction, or literature review. Screening criteria were developed to determine if a blendstock met the basic requirements for handling in the diesel distribution system and use as a blend with conventional diesel. Criteria included cetane number ≥40, flashpoint ≥52°C, and boiling point or T90 ≤338°C.
Technical Paper

Safety Training for the Hydrogen Economy

2006-04-03
2006-01-0329
The Pacific Northwest National Laboratory (PNNL) and the Volpentest Hazardous Materials Management and Emergency Response (HAMMER) Training and Education Center are helping to prepare emergency responders and permitting/code enforcement officials for their respective roles in the gradual transition to the hydrogen economy. Safety will be a critical component of the anticipated hydrogen transition. Public confidence goes hand in hand with perceived safety to such an extent that, without it, the envisioned transition is unlikely to occur. Stakeholders and the public must be reassured that hydrogen, although very different from gasoline and other conventional fuels, is no more dangerous. Ensuring safety in the hydrogen infrastructure will require a suitably trained emergency response force for containing the inevitable incidents as they occur, coupled with knowledgeable code officials to ensure that such incidents are kept to a minimum.
Technical Paper

Removing Dust from Confined Air Volumes - A Toy Model

2004-07-19
2004-01-2331
Most environments inhabited by living beings have dust. Much of that dust comes from the continuous flaking of our own skin and atmosphere borne particles of submicron size. Dust mites seem to play an important role in integrating fine scale dust, which they consume to grow, resulting in larger length scale dust. Dust continues to agglomerate and grow. Air filters are designed to remove dust and control dust agglomeration. We report a simple scaling law, based on kinematic simulations of dust filtration through a one dimensional idealized filter. The results reveal insights regarding how filters may clog in time. Our results may be of use to someone interested in designing customized air filters for optimum dust removal in an environment with a known dust distribution.
Technical Paper

Rapid Deactivation of Lean-Burn Natural Gas Engine Exhaust Oxidation Catalysts

1996-10-01
961976
Methane emissions from lean-burn natural gas engines can be relatively high. As natural gas fueled vehicles become more prevalent, future regulations may restrict these emissions. Preliminary reports indicated that conventional, precious metal oxidation catalysts rapidly deactivate (in less than 50 hours) in lean-burn natural gas engine exhaust. This investigation is directed at quantifying this catalyst deactivation and understanding its cause. The results may also be relevant to oxidation of lean-burn propane and gasoline engine exhaust. A platinum/palladium on alumina catalyst and a palladium on alumina catalyst were aged in the exhaust of a lean-burn natural gas engine (Cummins B5.9G). The engine was fueled with compressed natural gas. Catalyst aging was accomplished through a series of steady state cycles and heavy-duty transient tests (CFR 40 Part 86 Subpart N) lasting 10 hours. Hydrocarbons in the exhaust were speciated by gas chromatography.
Technical Paper

Radiator Performance Enhancement using a LiBr-H2O Absorption Cooler and Microchannel Technology: A Portable Life Support System Example

2006-07-17
2006-01-2267
Portable life support systems must be capable of performing thermal management in a wide variety of environments. A microchannel-based LiBr-H2O absorption cooler may make radiator cooling more attractive than water sublimation in high temperature environments by increasing the temperature and in turn reducing the required surface area of the radiator. This study showed that such a heat pump can lift the radiator temperature from 15°C to 60°C with a coefficient of performance of 0.65 and reduce the radiator area by up to 60%. Proof-of-concept testing using microchannel technology has been demonstrated. This technology should enable the LiBr-H2O absorption cooler by reducing its overall mass and improving heat and mass transfer rates in the absorber.
Technical Paper

Probabilistic Failure Prediction for Automotive Windshields Based on Strength and Flaw Distributions

2000-10-03
2000-01-2720
This paper describes a method for predicting structural failure probabilities for automotive windshields. The predictive model is supported by the data from strength tests performed on specimens of automotive glass. Evaluations of stresses can be based on finite element calculations, or measurements of the residual stresses that arise from fabrication. Failure probabilities for each subregion of a windshield are estimated from the local state of stress, the surface area or length (for edge elements) of the subregion, and statistical distributions of glass strengths. Example calculations are presented that show the relative contributions of edge stresses, surface stresses and residual stresses to calculated failure probabilities.
Technical Paper

Predicting the Radius of a Sheet Bent Around Drawbeads

2009-04-20
2009-01-1395
Drawbeads in production stamping dies often have insufficient penetration of the male bead into the female cavity. With insufficient penetration, the actual bending radii of the sheet metal are larger than the geometrical radii of the drawbead. The actual bending radii in the sheet directly affect the force that restrains sheet movement. To predict the restraining stress due to a drawbead, it is necessary to know the actual bending radii in the sheet as it passes though the drawbead. Data from a previous study are used to develop empirical regression equations for predicting measured radii of the sheet that is bent around the radii in a drawbead. A physical model for the evolution of the sheet radii as the drawbead closes is proposed. This model is consistent with the empirical equations and the mechanics of the sheet bending process.
Journal Article

Predicting Stress vs. Strain Behaviors of Thin-Walled High Pressure Die Cast Magnesium Alloy with Actual Pore Distribution

2016-04-05
2016-01-0290
In this paper, a three-dimensional (3D) microstructure-based finite element modeling method (i.e., extrinsic modeling method) is developed, which can be used in examining the effects of porosity on the ductility/fracture of Mg castings. For this purpose, AM60 Mg tensile samples were generated under high-pressure die-casting in a specially-designed mold. Before the tensile test, the samples were CT-scanned to obtain the pore distributions within the samples. 3D microstructure-based finite element models were then developed based on the obtained actual pore distributions of the gauge area. The input properties for the matrix material were determined by fitting the simulation result to the experimental result of a selected sample, and then used for all the other samples’ simulation. The results show that the ductility and fracture locations predicted from simulations agree well with the experimental results.
Journal Article

Particulate Matter Sampling and Volatile Organic Compound Removal for Characterization of Spark Ignited Direct Injection Engine Emissions

2011-08-30
2011-01-2100
More stringent emissions regulations are continually being proposed to mitigate adverse human health and environmental impacts of internal combustion engines. With that in mind, it has been proposed that vehicular particulate matter (PM) emissions should be regulated based on particle number in addition to particle mass. One aspect of this project is to study different sample handling methods for number-based aerosol measurements, specifically, two different methods for removing volatile organic compounds (VOCs). One method is a thermodenuder (TD) and the other is an evaporative chamber/diluter (EvCh). These sample-handling methods have been implemented in an engine test cell with a spark-ignited direct injection (SIDI) engine. The engine was designed for stoichiometric, homogeneous combustion.
Technical Paper

Particulate Characteristics for Varying Engine Operation in a Gasoline Spark Ignited, Direct Injection Engine

2011-04-12
2011-01-1220
The objective of this research is a detailed investigation of particulate sizing and number count from a spark-ignited, direct-injection (SIDI) engine at different operating conditions. The engine is a 549 [cc] single-cylinder, four-valve engine with a flat-top piston, fueled by Tier II EEE. A baseline engine operating condition, with a low number of particulates, was established and repeatability at this condition was ascertained. This baseline condition is specified as 2000 rpm, 320 kPa IMEP, 280 [°bTDC] end of injection (EOI), and 25 [°bTDC] ignition timing. The particle size distributions were recorded for particle sizes between 7 and 289 [nm]. The baseline particle size distribution was relatively flat, around 1E6 [dN/dlogDp], for particle diameters between 7 and 100 [nm], before dropping off to decreasing numbers at larger diameters. Distributions resulting from a matrix of different engine conditions were recorded.
Technical Paper

Optimized Carburized Steel Fatigue Performance as Assessed with Gear and Modified Brugger Fatigue Tests

2002-03-04
2002-01-1003
The effectiveness of three different techniques, designed to improve the bending fatigue life in comparison to conventionally processed gas-carburized 8620 steel, were evaluated with modified Brugger bending fatigue specimens and actual ring and pinion gears. The bending fatigue samples were machined from forged gear blanks from the same lot of material used for the pinion gear tests, and all processing of laboratory samples and gears was done together. Fatigue data were obtained on standard as-carburized parts and after three special processing histories: shot-peening to increase surface residual stresses; double heat treating to refined austenite grain size; and vacuum carburizing to minimize intergranular oxidation. Standard room-temperature S-N curves and endurance limits were obtained with the laboratory samples. The pinions were run as part of a complete gear set on a laboratory dynamometer and data were obtained at two imposed torque levels.
X