Refine Your Search

Topic

Search Results

Technical Paper

Vehicle Dynamics Synthesis Techniques for the Integration of Chassis Systems in Total Vehicle Design

1992-09-01
922104
A practical methodology is presented for the synthesis of Chassis Systems and their integration into a vehicle design to achieve a specified vehicle dynamic performance. By focusing on the fundamental performance requirements of gain, response time, and stability in midrange handling and the higher level design parameters of front and rear cornering compliance it is possible to find optimum values for these design parameters. The balancing of these higher level design parameters, in the context of overall vehicle performance, determines primary system requirements for the front suspension, rear suspension, tires, and steering system which may in turn be met by a variety of specific hardware designs.
Technical Paper

Vehicle Cross Wind Air Flow Analysis

1997-04-08
971517
CFD (Computational Fluid Dynamics) has been used to analyze vehicle air flow. In cross wind conditions an asymmetrical flow field around the vehicle is present. Under these circumstances, in addition to the forces present with symmetric air flow (drag and lift forces and pitching moment), side forces and moments (rolling and yawing) occur. Issues related to fuel economy, driveability, sealing effects (caused by suction exerted on the door), structural integrity (sun roof, spoiler), water management (rain deposit), and dirt deposit (shear stress) have been investigated. Due to the software developments and computer hardware improvements, results can be obtained within a reasonable time frame with excellent accuracy (both geometry and analytical solution). The flow velocity, streamlines, pressure field, and component forces can be extracted from the analysis results through visualization to identify potential improvement areas.
Technical Paper

Ultra Thinwall Light-off Performance - Varying Substrates, Catalysts, and Flow Rates; Models and Engine Testing

2002-03-04
2002-01-0352
To establish performance trends in ultra thin wall substrates and help support their selection criteria for designing catalytic converter systems, the light-off behavior of five Ultra Thin Wall ceramic substrates and two catalysts on an engine dynamometer are hereby examined. Modeling predictions are also compared to the engine results and the trends and implications are discussed. To quantify the performance of these different systems, light-off tests were performed on an engine dynamometer using a simulated FTP cycle. Five systems were evaluated (600/4, 600/3, 600/2, 900/2 and 1200/2) each with two different catalyst formulations. Engine bench aging was used to simulate typical aged conditions in the converter systems. Second by second emissions data for temperature, hydrocarbons and carbon monoxide, were used to evaluate the relative performances of the substrates.
Technical Paper

The General Motors Driving Simulator

1994-03-01
940179
A driving simulator development project at the Systems Engineering and Technical Process Center (SE/TP) is exploring the role of driving simulation in the vehicle design process. The simulator provides two vehicle mockup testing arenas that support a wide field of view, computer-generated image of the road scene which dynamically responds to driver commands as a function of programmable vehicle model parameters. Two unique aspects of the simulator are the fast 65 ms response time and low incidence rate of simulator induced syndrome (about 5%). Preliminary model validation results and data comparing driver performance in a vehicle vs. the simulator indicate accurate handling response dynamics within the on-center handling region (<0.3g lateral acceleration). Applications have included supporting the development of new steering system concepts, as well as evaluating the usability of vehicle controls and displays.
Technical Paper

The 1997 Chevrolet Corvette Structure Architecture Synthesis

1997-02-24
970089
This paper describes the design, synthesis-analysis and development of the unique vehicle structure architecture for the fifth generation Chevrolet Corvette, ‘C5’, which starts in the 1997 model year. The innovative structural layout of the ‘C5’ enables torsional rigidity in an open roof vehicle which exceeds that of all current production open roof vehicles by a wide margin. The first structural mode of the ‘C5’ in open roof configuration approaches typical values measured in similar size fixed roof vehicles. Extensive use of CAE and a systems methodology of benchmarking and requirements rolldown were employed to develop the ‘C5’ vehicle architecture. Simple computer models coupled with numerical optimization were used early in the design process to evaluate every design concept and alternative iteration for mass and structural efficiency.
Technical Paper

Preliminary Vehicle Structural Design For Comparison With Quantitative Criteria

1975-02-01
750136
To demonstrate that quantitative design criteria combined with computer analysis methods can facilitate the structural design of an automotive vehicle, two examples of computer aided preliminary design are given. The examples demonstrate analytical techniques applied at two different stages in the design process for a compact size (non-production) automobile. In the first example, analysis is applied to ensure that the front-end structure of the project vehicle is designed to withstand anticipated in-service loads. In the second example, structural dynamic analysis of the total vehicle system is performed to determine vibration response quantities in the passenger compartment. These quantities are compared with whole-body vibration criteria to assess passenger ride quality.
Technical Paper

Multivariable Control of Dual Loop EGR Diesel Engine with a Variable Geometry Turbo

2014-04-01
2014-01-1357
In this paper we consider the issues facing the design of a practical multivariable controller for a diesel engine with dual exhaust gas recirculation (EGR) loops. This engine architecture requires the control of two EGR valves (high pressure and low pressure), an exhaust throttle (ET) and a variable geometry turbocharger (VGT). A systematic approach suitable for production-intent air handling control using Model Predictive Control (MPC) for diesel engines is proposed. Furthermore, the tuning process of the proposed design is outlined. Experimental results for the performance of the proposed design are implemented on a 2.8L light duty diesel engine. Transient data over an LA-4 cycle for the closed loop performance of the controller are included to prove the effectiveness of the proposed design process.
Technical Paper

Modeling Large Deformations Using Polycarbonate Scale Models

1979-02-01
790701
This paper presents a method for modeling large deformations of structures using scale plastic models. The method was used to predict the dynamic barrier crash performance of a proposed vehicle structure with the aid of a computer simulation of the collision. The use of the technique can provide design direction in the early stages of the vehicle design process.
Journal Article

Modeling Approach to Estimate EGR Cooler Thermal Fatigue Life

2015-04-14
2015-01-1654
Cooled EGR continues to be a key technology to meet emission regulations, with EGR coolers performing a critical role in the EGR system. Designing EGR coolers that reliably manage thermal loads is a challenge with thermal fatigue being a top concern. The ability to estimate EGR cooler thermal fatigue life early in the product design and validation cycle allows for robust designs that meet engine component reliability requirements and customer expectations. This paper describes a process to create an EGR cooler thermal fatigue life model. Components which make up the EGR cooler have differing thermal responses, consequently conjugate transient CFD must be used to accurately model metal temperatures during heating and cooling cycles. Those metal temperatures are then imported into FEA software for structural analysis. Results from both the CFD and FEA are then used in a simplified numerical model to estimate the virtual strain of the EGR cooler.
Technical Paper

Keynote Address

1985-02-25
850580
Just-In-Time processing is changing the way the automotive industry operates. This paper explains Just-In-Time systems, how they are being applied at General Motors, and how the U.S. auto industry is applying them. The paper is based on three main premises: 1) the design of the product and the design of the process must be integrated, 2) the construction process is critical, and 3) the first day of operation of the process must be the first day efforts are made to improve it.
Technical Paper

Integrated Vehicle Electronics - An Overview of Its Potential

1986-10-20
861031
New methods are required for implementing the proliferation and sophistication of electronic controls and features to meet the customer's quality expectations. Vehicle electronic integration provides a potential solution for reconciling the seemingly contradictory objectives of high quality at reasonable cost. No module can be considered independently with this global approach. OEM subsystem and component suppliers' devices will need to play in concert with the overall vehicle's electrical/electronic strategy. Some new, separately packaged electronic features may eventually be assimilated within the framework of other electronic controllers.
Technical Paper

Glass Drop Design for Automobile Windows - Design of Glass Contour, Shape, Drop Motion, and Motion Guidance Systems

1995-04-01
951110
This paper presents a new computerized approach for designing the automobile window glass contour, the glass drop motion, and the regulator systems. The three-dimensional geometrical relationship of the glass contour, the drop path, and its guidance system have been studied. Methods for barrel and helical drops are presented for optimizing the glass profile and drop path trajectories. Criteria for perfecting the glass contour are developed for shaping the profile of the vehicle clay model. Methods for correcting the glass contour and shape are presented. Examples are provided to illustrate how to improve the design. This approach integrates the development works of glass contour, drop motion and regulator systems. Through this design approach the window glass can fit and move perfectly in the door assembly.
Technical Paper

Frequency Domain Considerations in Vehicle Design for Optimal Structural Feel

2000-03-06
2000-01-1344
A vehicle perceived to be solid and vibration free is said to have good “structural feel”. Specification for vehicle design to achieve a good stuctural feel depends heavily on the management of resonant modes existing in the low frequency domain. These resonances include vehicle rigid body, chassis subsystem, body flexure and large component modes. A process to specify the placement of resonant modes in the low frequency domain is discussed. This process allocates blocks within the frequency domain for classes of resonant modes stated above. Segregation of these blocks of resonant modes in the frequency domain limits modal interaction, thereby minimizing sympathetic vibration. Additionally, known areas of human body sensitivity within this low frequency domain are stated. Lastly, known vibration inputs are identified. This process is cognizant of these inputs and avoids overlapping with the vehicle resonant modes to provide further insurance of minimal modal interaction.
Technical Paper

Establishing Brake Design Parameters for Customer Satisfaction

1993-03-01
930799
Brake engineers are very familiar with designing automotive brake systems to meet performance requirements such as those specified in FMVSS 105. However, merely complying with governmental regulations does not ensure that the resulting brake system will satisfy customers of the product. Many attributes of brake performance are characterized by our customers in very subjective terms. In many cases it is not apparent how to incorporate these subjective customer desires into our product designs. This paper describes a process for transforming customer preferences about brake system performance expressed in subjective terms into objective parameters for brake system design. The process for converting customer preferences into design parameters involves several steps. The desires of the customer must be identified. This is often done in marketing clinics, customer interviews or surveys.
Technical Paper

Development of Parametric Tool to Design Base Frame for Cummins Marine Application Engine

2019-04-02
2019-01-0798
A spread sheet based parametric tool is developed to design the base frame for a marine generator-set. Factors such as engine details, generator details, anti-vibration mount (AVM) etc., that determine the design of the base frame, are set as parameters in the spreadsheet. The spreadsheet has formulae to calculate channel specifications, and AVM deflections. It is linked to channel standards database and selects the optimal channel based on calculations. Similarly, the tool provides guidance in selection of AVM from supplier catalogues, helps to predict number of anti-vibration mounts required and their location on base frame. This spread sheet is integrated with a generic base frame 3D model and 2D print in “Creo 3d modelling software” (Creo), which is auto-updated based on calculated parameters in the spreadsheet. Using this tool, the user can generate a 3D-model and 2D print. This tool helps to standardize the design process and reduces design turnaround time considerably.
Technical Paper

Chrysler's Versatile 2.2 Liter Fuel Injection Controller

1984-09-01
841249
Using an evolutionary design process, Chrysler has developed a multi-purpose fuel injection controller which goes well beyond simply delivering fuel. Designed with efficiency in mind, this microprocessor based system brings sophisticated technology to the automobile in a reliable and serviceable form.
Technical Paper

CAE Applications in the Automotive Industry-The Use of CAD for Vehicle Packaging and Master Drafts

1985-02-01
850446
Computer-aided engineering (CAE) is generally recognized as an important method of improving productivity. One of the major benefits of this technology has been to reduce the amount of manual labor spent analyzing changes made to vehicle designs. By using existing data, computer-aided design (CAD) can be used to co-ordinate the spatial relationships of the driver, passengers, engines, suspensions, tires, driver controls, and other body and chassis components. Special files containing a specific set of user-defined CAD language instructions, referred to as macros, are discussed and illustrated. Also included are tire clearance studies and master reference vehicle dimension files.
Technical Paper

Automotive Noise and Vibration Control Practices in the New Millennium

2003-05-05
2003-01-1589
The approaches used to develop an NVH package for a vehicle have changed dramatically over the last several years. New noise and vibration control strategies have been introduced, new materials have been developed, advanced testing techniques have been implemented, and sophisticated computer modeling has been applied. These approaches help design NVH solutions that are optimized for cost, performance, and weight. This paper explains the NVH practices available for use in designing vehicles for the new millennium.
Technical Paper

Application of Design and Development Techniques for Direct Injection Spark Ignition Engines

1999-03-01
1999-01-0506
Gasoline direct injection technology is receiving increased attention among automotive engineers due to its high potential to reach future emission and fuel economy goals. This paper reports some of the design and development techniques in use at Chrysler as applied to four-stroke Direct Injection Spark Ignition (DISI) engines. The spray characteristics of Chrysler's single-fluid high-pressure injector are reported. Tools used in the design process are identified. Observations of the in-cylinder fuel/air mixing process using laser diagnostic techniques and Computational Fluid Dynamics (CFD) are described. Finally, combustion and emissions characteristics using Design of Experiment (DoE) tests are presented.
Technical Paper

Analytical Techniques for Designing Riding Quality Into Automotive Vehicles

1967-02-01
670021
This paper describes techniques that predict and analyze dynamic response of vehicles traversing random rough surfaces. Road irregularities are statistically classified by frequency and amplitude distribution. This classification determines the nature of random inputs to mathematical vehicle models and allows computer prediction of dynamic response of a simulated vehicle. Once inputs and models are defined, parametric analysis with output criteria specified statistically can be performed. This allows prediction of vehicle riding quality and evaluation of design concepts. Statistical analysis of accelerometer measurements on actual vehicles permits verification of the design process and meaningful comparison between vehicles.
X