Refine Your Search

Topic

Author

Search Results

Technical Paper

Transient Emissions from an Uncolled Diesel Engine

1986-05-01
860224
A Cummins B55 in3 350 bhp heavy-duty, turbocharged diesel engine was tested in fully cooled and uncooled modes over the EPA transient emission test cycles for comparison of gaseous and particulate emissions. The results are presented at the same fuel injection timing and at similar NOx emission levels. Also, steady state emission measurements and analysis of real-time transient emission data of selected runs are discussed. The uncooled engine does not represent an adiabatic (insulated) engine in its emission characateristics, but may indicate some trends. It may be useful in identifying design and/or operating parameters that need optimization.
Technical Paper

The Pivotal Role of Crankcase Oil in Preventing Soot Wear and Extending Filter Life in Low Emission Diesel Engines

1999-05-03
1999-01-1525
In order to meet EPA's emission requirements for 1999 diesel engines, soot levels in the crankcase oil will increase significantly due to retarded timing to lower NOx. This study uses the Cummins M11 engine at soot levels up to 9% in the crankcase oil to demonstrate how oils can be formulated to prevent valve train wear, extend filter life, and maintain oil pumpability. The study includes the oil formulation development and the evaluation of API CG-4/SJ oils at 4.5% soot and API CH-4/SJ oils at 9% soot. In addition it includes X-Ray Photoelectron Spectroscopy (XPS) for surface film analysis and Surface Optical Profilometry and Scanning Electron Microscopy (SEM) of the valve train valve-bridges and rocker pads to determine the mechanism of failure. The oil's low temperature rheology as it affects oil pumpability is defined by Mini Rotary Viscometer (MRV TP-1), Scanning Brookfield Test (SBT), and Cold Cranking Simulator (CCS).
Technical Paper

The Effect of Oxygenates on Diesel Engine Particulate Matter

2002-05-06
2002-01-1705
A summary is presented of experimental results obtained from a Cummins B5.9 175 hp, direct-injected diesel engine fueled with oxygenated diesel blends. The oxygenates tested were dimethoxy methane (DMM), diethyl ether, a blend of monoglyme and diglyme, and ethanol. The experimental results show that particulate matter (PM) reduction is controlled largely by the oxygen content of the blend fuel. For the fuels tested, the effect of chemical structure was observed to be small. Isotopic tracer tests with ethanol blends reveal that carbon from ethanol does contribute to soot formation, but is about 50% less likely to form soot when compared to carbon from the diesel portion of the fuel. Numerical modeling was carried out to investigate the effect of oxygenate addition on soot formation. This effort was conducted using a chemical kinetic mechanism incorporating n-heptane, DMM and ethanol chemistry, along with reactions describing soot formation.
Technical Paper

The Cummins A3.4-125: A Charge Cooled IDI Turbo Diesel for the 1991 US Light-Heavy Duty Market

1990-09-01
901570
The Cummins A3.4-125 (rated 93 kW at 3600 rpm) has been developed to meet 1991 US and California light-heavy duty emission standards, replacing the Cummins 6AT3.4 (formerly Onan L634T-A). Compliance with the stringent particulate standard has been achieved by redesigning the combustion chamber, a systematic oil control program, and charge air cooling. The Ricardo Comet combustion chamber was modified to a downstream glowplug configuration. Oil control efforts addressed all sources of oil derived particulate. With charge air cooling, NOx emissions were reduced while improving fuel economy, torque output, altitude capability, and engine durability. THE CUMMINS A3.4-125 is an evolutionary development of the 1988-90 6AT3.4 engine. The development was driven primarily by 1991 US and California light-heavy duty emission standards, but also was the result of a policy of continuous product improvement. The Cummins A Series diesel engine family was conceived as the Onan L Series (1*).
Technical Paper

Sulfur Tolerance of Selective Partial Oxidation of NO to NO2 in a Plasma

1999-10-25
1999-01-3687
Several catalytic aftertreatment technologies rely on the conversion of NO to NO2 to achieve efficient reduction of NOx and particulates in diesel exhaust. These technologies include the use of selective catalytic reduction of NOx with hydrocarbons, NOx adsorption, and continuously regenerated particulate trapping. These technologies require low sulfur fuel because the catalyst component that is active in converting NO to NO2 is also active in converting SO2 to SO3. The SO3 leads to increase in particulates and/or poison active sites on the catalyst. A non-thermal plasma can be used for the selective partial oxidation of NO to NO2 in the gas-phase under diesel engine exhaust conditions. This paper discusses how a non-thermal plasma can efficiently oxidize NO to NO2 without oxidizing SO2 to SO3.
Technical Paper

Spatial Analysis of Emissions Sources for HCCI Combustion at Low Loads Using a Multi-Zone Model

2004-06-08
2004-01-1910
We have conducted a detailed numerical analysis of HCCI engine operation at low loads to investigate the sources of HC and CO emissions and the associated combustion inefficiencies. Engine performance and emissions are evaluated as fueling is reduced from typical HCCI conditions, with an equivalence ratio ϕ = 0.26 to very low loads (ϕ = 0.04). Calculations are conducted using a segregated multi-zone methodology and a detailed chemical kinetic mechanism for iso-octane with 859 chemical species. The computational results agree very well with recent experimental results. Pressure traces, heat release rates, burn duration, combustion efficiency and emissions of hydrocarbon, oxygenated hydrocarbon, and carbon monoxide are generally well predicted for the whole range of equivalence ratios. The computational model also shows where the pollutants originate within the combustion chamber, thereby explaining the changes in the HC and CO emissions as a function of equivalence ratio.
Technical Paper

Plasma-Assisted Catalytic Reduction of NOx

1998-10-19
982508
Many studies suggest that lean-NOx SCR proceeds via oxidation of NO to NO2 by oxygen, followed by the reaction of the NO2 with hydrocarbons. On catalysts that are not very effective in catalyzing the equilibration of NO+O2 and NO2, the rate of N2 formation is substantially higher when the input NOx is NO2 instead of NO. The apparent bifunctional mechanism in the SCR of NOx has prompted the use of mechanically mixed catalyst components, in which one component is used to accelerate the oxidation of NO to NO2, and another component catalyzes the reaction between NO2 and the hydrocarbon. Catalysts that previously were regarded as inactive for NOx reduction could therefore become efficient when mixed with an oxidation catalyst. Preconverting NO to NO2 opens the opportunity for a wider range of SCR catalysts and perhaps improves the durability of these catalysts. This paper describes the use of a non-thermal plasma as an efficient means for selective partial oxidation of NO to NO2.
Technical Paper

Piston-Liner Crevice Geometry Effect on HCCI Combustion by Multi-Zone Analysis

2002-10-21
2002-01-2869
A multi-zone model has been developed that accurately predicts HCCI combustion and emissions. The multi-zone methodology is based on the observation that turbulence does not play a direct role on HCCI combustion. Instead, chemical kinetics dominates the process, with hotter zones reacting first, and then colder zones reacting in rapid succession. Here, the multi-zone model has been applied to analyze the effect of piston crevice geometry on HCCI combustion and emissions. Three different pistons of varying crevice size were analyzed. Crevice sizes were 0.26, 1.3 and 2.1 mm, while a constant compression ratio was maintained (17:1). The results show that the multi-zone model can predict pressure traces and heat release rates with good accuracy. Combustion efficiency is also predicted with good accuracy for all cases, with a maximum difference of 5% between experimental and numerical results.
Technical Paper

Performance of a Ceramic Rotor in a Cummins T46 Turbocharger

1984-02-01
840014
This paper documents the successful operation of a modified Cummins T46 turbocharger with a ceramic rotor. This turbocharger is modified to incorporate a 4.6 inch diameter ceramic turbine rotor (pressureless sintered silicon nitride) on the hot end. These results document the most complete ceramic turbine rotor performance map, for a large ceramic turbocharger rotor, available to date.
Journal Article

Pathline Analysis of Full-cycle Four-stroke HCCI Engine Combustion Using CFD and Multi-Zone Modeling

2008-04-14
2008-01-0048
This paper investigates flow and combustion in a full-cycle simulation of a four-stroke, three-valve HCCI engine by visualizing the flow with pathlines. Pathlines trace massless particles in a transient flow field. In addition to visualization, pathlines are used here to trace the history, or evolution, of flow fields and species. In this study evolution is followed from the intake port through combustion. Pathline analysis follows packets of intake charge in time and space from induction through combustion. The local scalar fields traversed by the individual packets in terms of velocity magnitude, turbulence, species concentration and temperatures are extracted from the simulation results. The results show how the intake event establishes local chemical and thermal environments in-cylinder and how the species respond (chemically react) to the local field.
Technical Paper

Modeling Iso-octane HCCI Using CFD with Multi-Zone Detailed Chemistry; Comparison to Detailed Speciation Data Over a Range of Lean Equivalence Ratios

2008-04-14
2008-01-0047
Multi-zone CFD simulations with detailed kinetics were used to model iso-octane HCCI experiments performed on a single-cylinder research engine. The modeling goals were to validate the method (multi-zone combustion modeling) and the reaction mechanism (LLNL 857 species iso-octane) by comparing model results to detailed exhaust speciation data, which was obtained with gas chromatography. The model is compared to experiments run at 1200 RPM and 1.35 bar boost pressure over an equivalence ratio range from 0.08 to 0.28. Fuel was introduced far upstream to ensure fuel and air homogeneity prior to entering the 13.8:1 compression ratio, shallow-bowl combustion chamber of this 4-stroke engine. The CFD grid incorporated a very detailed representation of the crevices, including the top-land ring crevice and head-gasket crevice. The ring crevice is resolved all the way into the ring pocket volume. The detailed grid was required to capture regions where emission species are formed and retained.
Technical Paper

J1939 High Speed Serial Communications, The Next Generation Network for Heavy Duty Vehicles

1993-01-09
931809
Data link interfaces are a very important part of the heavy duty vehicle industry; sharing information between subsystems is vital. SAE Recommended Practices J1708, J1587 and J1922 were developed to provide standards for proprietary communications, general information sharing, diagnostic definition and early powertrain controls. The industry realized, however, that these standards would not accomplish the ultimate goal-that of a high speed control and communications network. The development of more capable serial data communications for the heavy duty vehicle industry was prompted by the following: the desire of component suppliers to integrate subsystems for improved performance; the advancement of technology; customer expectations; and government regulations.
Technical Paper

Isotopic Tracing of Fuel Carbon in the Emissions of a Compression-Ignition Engine Fueled with Biodiesel Blends

2003-06-23
2003-01-2282
Experimental tests were conducted on a Cummins B5.9 direct-injected diesel engine fueled with biodiesel blends. 20% and 50% blend levels were tested, as was 100% (neat) biodiesel. Emissions of particulate matter (PM), nitrogen oxides (NOx), hydrocarbons (HC) and CO were measured under steady-state operating conditions. The effect of biodiesel on total PM emissions was mixed; however, the contribution of the volatile organic fraction to total PM was greater for higher biodiesel blend levels. When only non-volatile PM mass was considered, reductions were observed for the biodiesel blends as well as for neat biodiesel. The biodiesel test fuels increased NOx, while HC and CO emissions were reduced. PM collected on quartz filters during the experimental runs were analyzed for carbon-14 content using accelerator mass spectrometry (AMS).
Technical Paper

HCCI Combustion: Analysis and Experiments

2001-05-14
2001-01-2077
Homogeneous charge compression ignition (HCCI) is a new combustion technology that may develop as an alternative to diesel engines with high efficiency and low NOx and particulate matter emissions. This paper describes the HCCI research activities being currently pursued at Lawrence Livermore National Laboratory and at the University of California Berkeley. Current activities include analysis as well as experimental work. On analysis, we have developed two powerful tools: a single zone model and a multi-zone model. The single zone model has proven very successful in predicting start of combustion and providing reasonable estimates for peak cylinder pressure, indicated efficiency and NOx emissions. This model is being applied to develop detailed engine performance maps and control strategies, and to analyze the problem of engine startability. The multi-zone model is capable of very accurate predictions of the combustion process, including HC and CO emissions.
Technical Paper

Fundamental Limits on NOx Reduction by Plasma

1997-05-01
971715
This paper discusses the gas-phase reaction mechanisms for removal of NOx in a plasma. The effect of oxygen content on the competition between the reduction and oxidation processes is discussed. The effect of the electron kinetic energy distribution on the radical production and subsequent chemistry is then discussed in order to predict the best performance that can be achieved for NOx reduction using the plasma alone. The fundamental limit on the minimum electrical energy consumption that will be required to implement NOx reduction in any type of plasma reactor is established.
Technical Paper

Feasibility of Plasma Aftertreatment for Simultaneous Control of NOx and Particulates

1999-10-25
1999-01-3637
Plasma reactors can be operated as a particulate trap or as a NOx converter. Particulate trapping in a plasma reactor can be accomplished by electrostatic precipitation. The soluble organic fraction of the trapped particulates can be utilized for the hydrocarbon-enhanced oxidation of NO to NO2. The NO2 can then be used to non-thermally oxidize the carbon fraction of the particulates. The oxidation of the carbon fraction by NO2 can lead to reduction of NOx or backconversion of NO2 to NO. This paper examines the hydrocarbon and electrical energy density requirements in a plasma for maximum NOx conversion in both heavy-duty and light-duty diesel engine exhaust. The energy density required for complete oxidation of hydrocarbons is also examined and shown to be much greater than that required for maximum NOx conversion. The reaction of NO2 with carbon is shown to lead mainly to backconversion of NO2 to NO.
Journal Article

Experimental and Numerical Study on the Effect of Nitric Oxide on Autoignition and Knock in a Direct-Injection Spark-Ignition Engine

2022-08-30
2022-01-1005
Nitric Oxide (NO) can significantly influence the autoignition reactivity and this can affect knock limits in conventional stoichiometric SI engines. Previous studies also revealed that the role of NO changes with fuel type. Fuels with high RON (Research Octane Number) and high Octane Sensitivity (S = RON - MON (Motor Octane Number)) exhibited monotonically retarding knock-limited combustion phasing (KL-CA50) with increasing NO. In contrast, for a high-RON, low-S fuel, the addition of NO initially resulted in a strongly retarded KL-CA50 but beyond the certain amount of NO, KL-CA50 advanced again. The current study focuses on same high-RON, low-S Alkylate fuel to better understand the mechanisms responsible for the reversal in the effect of NO on KL-CA50 beyond a certain amount of NO.
Technical Paper

Engine Testing for Quality and Productivity

1988-11-01
881768
This paper discusses the various process changes, engine improvements, and equipment evolution that have contributed to significant increases in test productivity for heavy duty engines over the past several years. It deals with the development of short test cycles, methods of diagnosing operating problems, methods of maintaining test accuracy and discusses systems for minimizing test equipment down time. Finally it presents historical overview of the changes as they occurred at Cummins Engine Company and how performance improved over that transition period.
Technical Paper

Effect of Mixing on Hydrocarbon and Carbon Monoxide Emissions Prediction for Isooctane HCCI Engine Combustion Using a Multi-zone Detailed Kinetics Solver

2003-05-19
2003-01-1821
This research investigates how the handling of mixing and heat transfer in a multi-zone kinetic solver affects the prediction of carbon monoxide and hydrocarbon emissions for simulations of HCCI engine combustion. A detailed kinetics multi-zone model is now more closely coordinated with the KIVA3V computational fluid dynamics code for simulation of the compression and expansion processes. The fluid mechanics is solved with high spatial and temporal resolution (40,000 cells). The chemistry is simulated with high temporal resolution, but low spatial resolution (20 computational zones). This paper presents comparison of simulation results using this enhanced multi-zone model to experimental data from an isooctane HCCI engine.
Technical Paper

Effect of Diesel Fuel Properties on Emissions and Performance

1974-02-01
740692
Tests were conducted with several production diesel engines and one prototype low-emission diesel engine to determine the effect of fuel properties on exhaust emissions and engine performance. Fuel cetane number was found to be the most significant fuel property; low cetane fuels resulted in higher hydrocarbons and oxides of nitrogen and increased noise. Conversely, higher cetane fuels produced lower emissions and noise, and also improved engine starting characteristics. The degree of these effects was influenced by engine configuration. Although engine design changes can result in substantial emissions reduction, fuel properties can also influence achieveable levels.
X