Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Why Cu- and Fe-Zeolite SCR Catalysts Behave Differently At Low Temperatures

2010-04-12
2010-01-1182
Cu- and Fe-zeolite SCR catalysts emerged in recent years as the primary candidates for meeting the increasingly stringent lean exhaust emission regulations, due to their outstanding activity and durability characteristics. It is commonly known that Cu-zeolite catalysts possess superior activity to Fe-zeolites, in particular at low temperatures and sub-optimal NO₂/NOx ratios. In this work, we elucidate some underlying mechanistic differences between these two classes of catalysts, first based on their NO oxidation abilities, and then based on the relative properties of the two types of exchanged metal sites. Finally, by using the ammonia coverage-dependent NOx performance, we illustrate that state-of-the-art Fe-zeolites can perform better under certain transient conditions than in steady-state.
Journal Article

Thermodynamic Systems for Tier 2 Bin 2 Diesel Engines

2013-04-08
2013-01-0282
Light duty vehicle emission standards are getting more stringent than ever before as stipulated by US EPA Tier 2 Standards and LEV III regulations proposed by CARB. The research in this paper sponsored by US DoE is focused towards developing a Tier 2 Bin 2 Emissions compliant light duty pickup truck with class leading fuel economy targets of 22.4 mpg “City” / 34.3 mpg “Highway”. Many advanced technologies comprising both engine and after-treatment systems are essential towards accomplishing this goal. The objective of this paper would be to discuss key engine technology enablers that will help in achieving the target emission levels and fuel economy. Several enabling technologies comprising air-handling, fuel system and base engine design requirements will be discussed in this paper highlighting both experimental and analytical evaluations.
Technical Paper

Thermally Stable Pt/Rh Catalysts

1997-10-01
972909
The increasing severity in emission standards around the world has been accompanied by the development of more active, durable catalysts. With a view to investigating the effects of high thermal aging on the catalyst performance and structure, the relationships of washcoat composition, washcoat structure, and PGM location with respect to catalyst activity were clarified using a model gas test, as well as physical and chemical characterization methods. The influence of newly developed washcoat components and PGM location on catalyst performance are also demonstrated by engine bench tests. The results obtained in this study indicate the newly developed Pt/Rh catalyst techologies are appropriate for future applications in which the catalyst will be exposed to extremely high temperature and flowrates.
Technical Paper

The Use of Palladium in Advanced Catalysts

1995-02-01
950259
New advanced Pd only, Pd:Rh and Pt:Pd:Rh catalysts are compared with a current platinum rhodium catalyst after poisoning and thermal ageing. The results indicate that at equivalent precious metal cost (at 1994 prices) the advanced palladium based catalysts achieve significantly improved performance compared with current Pt, Rh and Pd technology. The new Pd:Rh formulation is recommended for close coupled locations and the Pt:Pd:Rh formulation recommended for underfloor locations where residual fuel lead may be present. The formation of H2S is shown to be low with the palladium based catalysts. Finally, it is shown that the new catalysts with balanced oxidation and reduction capability perform better in multi-brick systems than addition of a highly loaded palladium only front brick.
Technical Paper

The Thermodynamic Design, Analysis and Test of Cummins’ Supertruck 2 50% Brake Thermal Efficiency Engine System

2019-04-02
2019-01-0247
Current production heavy duty diesel engines have a brake thermal efficiency (BTE) between 43-46% [1]. In partnership with the United States Department of Energy (DOE) as part of the Supertruck 2 program, Cummins has undertaken a research program to develop a new heavy-duty diesel engine designed to deliver greater than 50% BTE without the use of waste heat recovery. A system level optimization focused on: increased compression ratio, higher injection rate, carefully matched highly efficient turbocharging, variable lube oil pump, variable cooling components, and low restriction after treatment designed to deliver 50% BTE at a target development point. This work will also illustrate the system level planning and understanding of interactions required to allow that same 50% BTE heavy duty diesel engine to be integrated with a waste heat recovery (WHR) system to deliver system level efficiency of 55% BTE at a single point.
Technical Paper

The Prediction of Connecting Rod Fretting and Fretting Initiated Fatigue Fracture

2004-10-25
2004-01-3015
The influence of big-end bore fretting on connecting rod fatigue fracture is investigated. A finite element model, including rod-bearing contact interaction, is developed to simulate a fatigue test rig where the connecting rod is subjected to an alternating uniaxial load. Comparison of the model results with a rod fracture from the fatigue rig shows good correlation between the fracture location and the peak ‘Ruiz’ criterion, rather than the peak tensile stress location, indicating the potential of fretting to initiate a fatigue fracture and the usefulness of the ‘Ruiz’ criterion as a measure of location and severity. The model is extended to simulate a full engine cycle using pressure loads from a bearing EHL analysis. A fretting map and a ‘Ruiz’ criterion map are developed for the full engine cycle, giving an indication of a safe ‘Ruiz’ level from an existing engine which has been in service for more than 5 years.
Technical Paper

The Influences of Testing Conditions on DOC Light-Off Experiments

2023-04-11
2023-01-0372
Diesel oxidation catalyst (DOC) is one of the critical catalyst components in modern diesel aftertreatment systems. It mainly converts unburned hydrocarbon (HC) and CO to CO2 and H2O before they are released to the environment. In addition, it also oxidizes a portion of NO to NO2, which improves the NOx conversion efficiency via fast SCR over the downstream selective catalytic reduction (SCR) catalyst. HC light-off tests, with or without the presence of NOx, has been typically used for DOC evaluation in laboratory. In this work, we aim to understand the influences of DOC light-off experimental conditions, such as initial temperature, initial holding time, HC species, with or without the presence of NOx, on the DOC HC light-off behavior. The results indicate that light-off test with lower initial temperature and longer initial holding time (at its initial temperature) leads to higher DOC light-off temperature.
Technical Paper

The Impact of Fuel Sulfur Level on FTP Emissions - Effect of PGM Catalyst Type

1997-02-24
970737
With the advent of stricter vehicle emission standards, the improvement of three way catalyst performance and durability remains a pressing issue. A critical consideration in catalyst design is the potential for variations in fuel sulfur levels to have a significant impact on the ability to reach TLEV, LEV, and ULEV emission levels. As a result, a better understanding of the role of PGM composition in the interplay between thermal durability and sulfur tolerance is required. Three way catalysts representative of standard Pd-only, Pd/Rh and Pt/Rh formulations were studied over a variety of aging and evaluation conditions. The parameters investigated included aging temperature, air fuel ratio and sulfur level. Evaluations were performed on a 1994 TLEV vehicle using different sulfur level fuels. The effect of PGM loading was also included within the study.
Journal Article

The Impact of Ammonium Nitrate Species on Low Temperature NOx Conversion Over Cu/CHA SCR Catalyst

2017-03-28
2017-01-0953
Cu/CHA catalysts have been widely used in the industry, due to their desirable performance characteristics including the unmatched hydrothermal stability. While broadly recognized for their outstanding activity at or above 200°C, these catalysts may not show desired levels of NOx conversion at lower temperatures. To achieve high NOx conversions it is desirable to have NO2/NOx close to 0.5 for fast SCR. However even under such optimal gas feed conditions, sustained use of Cu/CHA below 200°C leads to ammonium nitrate formation and accumulation, resulting in the inhibition of NOx conversion. In this contribution, the formation and decomposition of NH4NO3 on a commercial Cu/CHA catalyst have been investigated systematically. First, the impact of NH4NO3 self-inhibition on SCR activity as a function of temperature and NO2/NOx ratios was investigated through reactor testing.
Technical Paper

The Effects of Thermal Degradation on the Performance of a NOX Storage/Reduction Catalyst

2009-04-20
2009-01-0631
The performance characteristics of a commercial lean-NOX trap catalyst were evaluated between 200 and 500°C, using H2, CO, and a mixture of both H2 and CO as reductants before and after different high-temperature aging steps, from 600 to 750°C. Tests included NOX reduction efficiency during cycling, NOX storage capacity (NSC), oxygen storage capacity (OSC), and water-gas-shift (WGS) and NO oxidation reaction extents. The WGS reaction extent at 200 and 300°C was negatively affected by thermal degradation, but at 400 and 500°C no significant change was observed. Changes in the extent of NO oxidation did not show a consistent trend as a function of thermal degradation. The total NSC was tested at 200, 350 and 500°C. Little change was observed at 500°C with thermal degradation but a steady decrease was observed at 350°C as the thermal degradation temperature was increased.
Technical Paper

The Effect of Three-Way Catalyst Formulation on Sulphur Tolerance and Emissions from Gasoline Fuelled Vehicles

1994-03-01
940310
In a collaborative programme, the effects of gasoline sulphur content on regulated emissions from three-way catalyst equipped vehicles have been studied. The programme evaluated the sulphur tolerance of three different catalyst formulations on the same range of vehicles. The catalyst chemistries were chosen to be representative of typical current formulations in different markets, as follows: 1. Platinum/Rhodium (Pt/Rh) 2. Platinum/Rhodium/Nickel (Pt/Rh/Ni) 3. Palladium/Rhodium (Pd/Rh) Each vehicle/catalyst combination was tested with fuels containing sulphur at nominal levels of 50, 250 and 450 ppm weight. All fuels were produced using the low sulphur fuel as a base and doping to 250 and 450 ppm S with a mixture of nine sulphur compounds, typical of those actually occurring in European gasolines. The results show clear differences between the magnitudes of the sulphur effect with different catalyst formulations.
Technical Paper

The Design of Flow-Through Diesel Oxidation Catalysts

1993-03-01
930130
Progress made in reducing engine-out particulate emissions has prompted a revival in the design of flow-through oxidation catalysts for diesel engine applications. Effort in this area has focused primarily in the area of SOF control for the further reduction of particulate emissions. The work reported here covers some of the catalyst design parameters important for SOF and gas phase pollutant control. This is illustrated with both laboratory reactor and engine evaluation data for several formulary and operating parameters. Platinum-based catalysts are shown to be generally the most active, but they require treatments or additives to reduce the inherently high activity of platinum for the oxidation of SO2 present in the exhaust. The effect of additives and their loading on the oxidation activity of Pt/alumina for HC, CO, SOF and SO2 oxidation is discussed in detail and additives are identified which reduce SO2 oxidation with minimal effect on HC, CO or SOF oxidation activity.
Technical Paper

The Application of Acoustic Radiation Modes to Engine Oil Pan Design

2017-06-05
2017-01-1844
In modern engine design, downsizing and reducing weight while still providing an increased amount of power has been a general trend in recent decades. Traditionally, an engine design with superior NVH performance usually comes with a heavier, thus sturdier structure. Therefore, modern engine design requires that NVH be considered in the very early design stage to avoid modifications of engine structure at the last minute, when very few changes can be made. NVH design optimization of engine components has become more practical due to the development of computer software and hardware. However, there is still a need for smarter algorithms to draw a direct relationship between the design and the radiated sound power. At the moment, techniques based on modal acoustic transfer vectors (MATVs) have gained popularity in design optimization for their good performance in sound pressure prediction.
Journal Article

Systematic Development of Highly Efficient and Clean Engines to Meet Future Commercial Vehicle Greenhouse Gas Regulations

2013-09-24
2013-01-2421
With increasing energy prices and concerns about the environmental impact of greenhouse gas (GHG) emissions, a growing number of national governments are putting emphasis on improving the energy efficiency of the equipment employed throughout their transportation systems. Within the U.S. transportation sector, energy use in commercial vehicles has been increasing at a faster rate than that of automobiles. A 23% increase in fuel consumption for the U.S. heavy duty truck segment is expected from 2009 to 2020. The heavy duty vehicle oil consumption is projected to grow while light duty vehicle (LDV) fuel consumption will eventually experience a decrease. By 2050, the oil consumption rate by LDVs is anticipated to decrease below 2009 levels due to CAFE standards and biofuel use. In contrast, the heavy duty oil consumption rate is anticipated to double. The increasing trend in oil consumption for heavy trucks is linked to the vitality, security, and growth of the U.S. and global economies.
Technical Paper

Sustained Low Temperature NOx Reduction

2018-04-03
2018-01-0341
Sustained NOx reduction at low temperatures, especially in the 150-200 °C range, shares some similarities with the more commonly discussed cold-start challenge, however, poses a number of additional and distinct technical problems. In this project, we set a bold target of achieving and maintaining 90% NOx conversion at the SCR catalyst inlet temperature of 150 °C. This project is intended to push the boundaries of the existing technologies, while staying within the realm of realistic future practical implementation. In order to meet the resulting challenges at the levels of catalyst fundamentals, system components, and system integration, Cummins has partnered with the DOE, Johnson Matthey, and Pacific Northwest National Lab and initiated the Sustained Low-Temperature NOx Reduction program at the beginning of 2015 and completed in 2017.
Technical Paper

Sulfur Management of NOx Adsorber Technology for Diesel Light-duty Vehicle and Truck Applications

2003-10-27
2003-01-3245
Sulfur poisoning from engine fuel and lube is one of the most recognizable degradation mechanisms of a NOx adsorber catalyst system for diesel emission reduction. Even with the availability of 15 ppm sulfur diesel fuel, NOx adsorber will be deactivated without an effective sulfur management. Two general pathways are currently being explored for sulfur management: (1) the use of a disposable SOx trap that can be replaced or rejuvenated offline periodically, and (2) the use of diesel fuel injection in the exhaust and high temperature de-sulfation approach to remove the sulfur poisons to recover the NOx trapping efficiency. The major concern of the de-sulfation process is the many prolonged high temperature rich cycles that catalyst will encounter during its useful life. It is shown that NOx adsorber catalyst suffers some loss of its trapping capacity upon high temperature lean-rich exposure.
Technical Paper

Sulfur Impact on Methane Steam Reforming over the Stoichiometric Natural Gas Three-Way Catalyst

2024-04-09
2024-01-2633
The steam reforming of CH4 plays a crucial role in the high-temperature activity of natural gas three-way catalysts. Despite existing reports on sulfur inhibition in CH4 steam reforming, there is a limited understanding of sulfur storage and removal dynamics under various lambda conditions. In this study, we utilize a 4-Mode sulfur testing approach to elucidate the dynamics of sulfur storage and removal and their impact on three-way catalyst performance. We also investigate the influence of sulfur on CH4 steam reforming by analyzing CH4 conversions under dithering, rich, and lean reactor conditions. In the 4-Mode sulfur test, saturating the TWC with sulfur at low temperatures emerges as the primary cause of significant three-way catalyst performance degradation. After undergoing a deSOx treatment at 600 °C, NOx conversions were fully restored, while CH4 conversions did not fully recover.
Journal Article

Spatially-Resolved Thermal Degradation Induced Temperature Pattern Changes along a Commercial Lean NOX Trap Catalyst

2010-04-12
2010-01-1214
The low-temperature performance characteristics of a commercial lean NOX trap catalyst were evaluated using infra-red thermography (IRT) before and after a high-temperature aging step. Reaction tests included propylene oxidation, oxygen storage capacity measurements, and simulated cycling conditions for NOX reduction, using H₂ as the reductant during the regeneration step of the cycle. Testing with and without NO in the lean phase showed thermal differences between the reductant used in reducing the stored oxygen and that for nitrate decomposition and reduction. IRT clearly demonstrated where NOX trapping and regeneration were occurring spatially as a function of regeneration conditions, with variables including hydrogen content of the regeneration phase and lean- and rich-phase cycle times.
Technical Paper

Sooted Diesel Engine Oil Pumpability Studies as the Basis of a New Heavy Duty Diesel Engine Oil Performance Specification

2002-05-06
2002-01-1671
Changing diesel engine emission requirements for 2002 have led many diesel engine manufacturers to incorporate cooled Exhaust Gas Recirculation, EGR, as a means of reducing NOx. This has resulted in higher levels of soot being present in used oils. This paper builds on earlier work with fresh oils and describes a study of the effect of highly sooted oils on the low temperature pumpability in diesel engines. Four experimental diesel engine oils, of varying MRV TP-1 viscosities, were run in a Mack T-8 engine to obtain a soot level ranging between 6.1 and 6.6%. These sooted oils were then run in a Cummins M11 engine installed in a low temperature cell. Times to lubricate critical engine components were measured at temperatures ranging between -10 °C and -25 °C. A clear correlation was established between the MRV TP-1 viscosity of a sooted oil and the time needed to lubricate critical engine components at a given test temperature.
Journal Article

Smart Sensing and Decomposition of NOx and NH3 Components from Production NOx Sensor Signals

2011-04-12
2011-01-1157
Production NO sensors have a strong cross-sensitivity to ammonia which limits their use for closed-loop SCR control and diagnostics since increases in sensor output can be caused by either gas component. Recently, Ammonia/NO Ratio (ANR) perturbation methods have been proposed for determining the dominant component in the post-SCR exhaust as part of the overall SCR control strategy, but these methods or the issue of sensor cross-sensitivity have not been critically evaluated or studied in their own right. In this paper the dynamic sensor direct- and cross-sensitivities are estimated from experimental FTIR data (after compensating for the dynamics of the gas sampling system) and compared to nominal values provided by the manufacturer. The ANR perturbation method and the use of different input excitations are then discussed within an analytical framework, and applied to experimental data from a large diesel engine.
X