Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Wissler Simulations of a Liquid Cooled and Ventilation Garment (LCVG) for Extravehicular Activity (EVA)

2006-07-17
2006-01-2238
In order to provide effective cooling for astronauts during extravehicular activities (EVAs), a liquid cooling and ventilation garment (LCVG) is used to remove heat by a series of tubes through which cooling water is circulated. To better predict the effectiveness of the LCVG and determine possible modifications to improve performance, computer simulations dealing with the interaction of the cooling garment with the human body have been run using the Wissler Human Thermal Model. Simulations have been conducted to predict the heat removal rate for various liquid cooled garment configurations. The current LCVG uses 48 cooling tubes woven into a fabric with cooling water flowing through the tubes. The purpose of the current project is to decrease the overall weight of the LCVG system. In order to achieve this weight reduction, advances in the garment heat removal rates need to be obtained.
Technical Paper

Virtual Human Modeling for Manufacturing and Maintenance

1998-04-28
981311
Deneb's Interactive Graphic Robot Instruction Progam (IGRIP) and Envision software packages with the Ergonomic analysis option enabled were used for manufacturing process analysis and maintainability / human factors design evaluation in the Lockheed Martin Tactical Aircraft Systems - Fort Worth facility. The initial objective of both the manufacturing and maintainability engineering community was to validate the use of ergonomic modeling and simulation tools in an effort to gain acceptance of this new technology. Each discipline selected an existing operation to baseline the validation. Manufacturing selected the F-16 vertical fin as it is assembled from detail parts into a complete assembly, ready to be mated to the aircraft. Maintainability selected the removal of the Expanded Data Entry Electronics Unit (EXDEEU) located behind the ejection seat of the F-16 aircraft.
Technical Paper

Toward Human-Robot Interface Standards: Use of Standardization and Intelligent Subsystems for Advancing Human-Robotic Competency in Space Exploration

2006-07-17
2006-01-2019
NASA's plans to implement the Vision for Space Exploration include extensive human-robot cooperation across an enterprise spanning multiple missions, systems, and decades. To make this practical, strong enterprise-level interface standards (data, power, communication, interaction, autonomy, and physical) will be required early in the systems and technology development cycle. Such standards should affect both the engineer and operator roles that humans adopt in their interactions with robots. For the engineer role, standards will result in reduced development lead-times, lower cost, and greater efficiency in deploying such systems. For the operator role, standards will result in common autonomy and interaction modes that reduce operator training, minimize workload, and apply to many different robotic platforms. Reduced quantities of spare hardware could also be a benefit of standardization.
Technical Paper

Thermal Analysis of Compressible CO2 Flow for PFE TeSS Nozzle of Fire Detection System

2002-07-15
2002-01-2347
A thermal analysis of the compressible carbon dioxide (CO2) flow for the Portable Fire Extinguisher (PFE) system has been performed. A SINDA/FLUINT model has been developed for this analysis. The model includes the PFE tank and the Temporary Sleep Station (TeSS) nozzle, and both have an initial temperature of 72 °F. In order to investigate the thermal effect on the nozzle due to discharging CO2, the PFE TeSS nozzle pipe has been divided into three segments. This model also includes heat transfer predictions for PFE tank inner and outer wall surfaces. The simulation results show that the CO2 discharge rates and component wall temperatures fall within the requirements for the PFE system. The simulation results also indicate that after 50 seconds, the remaining CO2 in the tank may be near the triple point (gas, liquid and solid) state and, therefore, restricts the flow.
Technical Paper

The Importance of HEV Fuel Economy and Two Research Gaps Preventing Real World Implementation of Optimal Energy Management

2017-01-10
2017-26-0106
Optimal energy management of hybrid electric vehicles has previously been shown to increase fuel economy (FE) by approximately 20% thus reducing dependence on foreign oil, reducing greenhouse gas (GHG) emissions, and reducing Carbon Monoxide (CO) and Mono Nitrogen Oxide (NOx) emissions. This demonstrated FE increase is a critical technology to be implemented in the real world as Hybrid Electric Vehicles (HEVs) rise in production and consumer popularity. This review identifies two research gaps preventing optimal energy management of hybrid electric vehicles from being implemented in the real world: sensor and signal technology and prediction scope and error impacts. Sensor and signal technology is required for the vehicle to understand and respond to its environment; information such as chosen route, speed limit, stop light locations, traffic, and weather needs to be communicated to the vehicle.
Technical Paper

The CEV Smart Buyer Team Effort: A Summary of the Crew Module & Service Module Thermal Design Architecture

2007-07-09
2007-01-3046
The NASA-wide CEV Smart Buyer Team (SBT) was assembled in January 2006 and was tasked with the development of a NASA in-house design for the CEV Crew Module (CM), Service Module (SM), and Launch Abort System (LAS). This effort drew upon over 250 engineers from all of the 10 NASA Centers. In 6 weeks, this in-house design was developed. The Thermal Systems Team was responsible for the definition of the active and passive design architecture. The SBT effort for Thermal Systems can be best characterized as a design architecting activity. Proof-of-concepts were assessed through system-level trade studies and analyses using simplified modeling. This nimble design approach permitted definition of a point design and assessing its design robustness in a timely fashion. This paper will describe the architecting process and present trade studies and proposed thermal designs
Technical Paper

The Advanced Design of a Liquid Cooling Garment Through Long-Term Research: Implications of the Test Results on Three Different Garments

2009-07-12
2009-01-2517
The most recent goal of our research program was to identify the optimal features of each of three garments to maintain core temperature and comfort under intensive physical exertion. Four males and 2 females between the ages of 22 and 46 participated in this study. The garments evaluated were the MACS-Delphi, Russian Orlan, and NASA LCVG. Subjects were tested on different days in 2 different environmental chamber temperature/humidity conditions (24°C/H∼28%; 35°C/H∼20%). Each session consisted of stages of treadmill walking/running (250W to 700W at different stages) and rest. In general, the findings showed few consistent differences among the garments. The MACS-Delphi was better able to maintain subjects within a skin and core temperature comfort zone than was evident in the other garments as indicated by a lesser fluctuation in temperatures across physical exertion levels.
Technical Paper

Testing of the Prototype Plant Research Unit Subsystems

1996-07-01
961507
The Plant Research Unit (PRU) is currently under development by the Space Station Biological Research Project (SSBRP) team at NASA Ames Research Center (ARC) with a scheduled launch in 2001. The goal of the project is to provide a controlled environment that can support seed-to-seed and other plant experiments for up to 90 days. This paper describes testing conducted on the major PRU prototype subsystems. Preliminary test results indicate that the prototype subsystem hardware can meet most of the SSBRP science requirements within the Space Station mass, volume, power and heat rejection constraints.
Technical Paper

Testing and Analysis of an Environmental System Test Stand

2003-07-07
2003-01-2361
Thermal control systems for space application plant growth chambers offer unique challenges. The ability to control temperature and humidity independently gives greater flexibility for optimizing plant growth. Desired temperature and relative humidity range vary widely from 15°C to 35°C and 65% to 85% respectively. On top of all of these variables, the thermal control system must also be conservative in power and mass. These requirements to develop and test a robust thermal control system for space applications led to the design and development of the Environmental System Test Stand (ESTS) at NASA Johnson Space Center (JSC). The ESTS was designed to be a size constrained, environmental control system test stand with the flexibility to allow for a variety of thermal and lighting technologies. To give greater understanding to the environmental control system, the development of the ESTS included both mathematical models and the physical test stand.
Technical Paper

Standardized Radiation Shield Design Method: 2005 HZETRN

2006-07-17
2006-01-2109
Research committed by the Langley Research Center through 1995 resulting in the HZETRN code provides the current basis for shield design methods according to NASA STD-3000 (2005). With this new prominence, the database, basic numerical procedures, and algorithms are being re-examined with new methods of verification and validation being implemented to capture a well defined algorithm for engineering design processes to be used in this early development phase of the Bush initiative. This process provides the methodology to transform the 1995 HZETRN research code into the 2005 HZETRN engineering code to be available for these early design processes. In this paper, we will review the basic derivations including new corrections to the codes to insure improved numerical stability and provide benchmarks for code verification.
Technical Paper

Space Crew Radiation Exposure Analysis System Based on a Commercial Stand-Alone CAD System

1992-07-01
921372
Major improvements have recently been completed in the approach to spacecraft shielding analysis. A Computer-Aided Design (CAD)-based system has been developed for determining the shielding provided to any point within or external to the spacecraft. Shielding analysis is performed using a commercially available stand-alone CAD system and a customized ray-tracing subroutine contained within a standard engineering modeling software package. This improved shielding analysis technique has been used in several vehicle design projects such as a Mars transfer habitat, pressurized lunar rover, and the redesigned Space Station. Results of these analyses are provided to demonstrate the applicability and versatility of the system.
Technical Paper

Simulation Study of Space Suit Thermal Control

2000-07-10
2000-01-2391
Automatic thermal comfort control for the minimum consumables PLSS is undertaken using several control approaches. Accuracy and performance of the strategies using feedforward, feedback, and gain scheduling are evaluated through simulation, highlighting their advantages and limitations. Implementation issues, consumable usage, and the provision for the extension of these control strategies to the cryogenic PLSS are addressed.
Technical Paper

SAWD II Subsystem Integration into the Variable Pressure Growth Chamber: A Systems Level Analysis Using CASE/A

1994-06-01
941451
The NASA Johnson Space Center has plans to integrate a Solid Amine Water Desorbed (SAWD II) carbon dioxide removal subsystem into the Variable Pressure Growth Chamber (VPGC). The SAWD II subsystem will be used to remove any excess carbon dioxide (CO2) input into the VPGC which is not assimilated by the plants growing in the chamber. An analysis of the integrated VPGC-SAWD II system was performed using a mathematical model of the system implemented in the Computer-Aided System Engineering and Analysis (CASE/A) package. The analysis consisted of an evaluation of the SAWD II subsystem configuration within the VPGC, the planned operations for the subsystem, and the overall performance of the subsystem and other VPGC subsystems. Based on the model runs, recommendations were made concerning the SAWD II subsystem configuration and operations, and the chambers' automatic CO2 injection control subsystem.
Technical Paper

Regenerative Water Recovery System Testing and Model Correlation

1997-07-01
972550
Biological wastewater processing has been under investigation by AlliedSignal Aerospace and NASA Johnson Space Center (JSC) for future use in space. Testing at JSC in the Hybrid Regenerative Water Recovery System (HRWRS) in preparation for future closed human testing has been performed. Computer models have been developed to aid in the design of a new four-person immobilized cell bioreactor. The design of the reactor and validation of the computer model is presented. In addition, the total organic carbon (TOC) computer model has been expanded to begin investigation of nitrification. This model is being developed to identify the key parameters of the nitrification process, and to improve the design and operating conditions of nitrifying bioreactors. In addition, the model can be used as a design tool to rapidly predict the effects of changes in operational conditions and reactor design, significantly reducing the number and duration of experiments required.
Technical Paper

Program Development for Exercise Countermeasures

1992-07-01
921140
Research indicates that adaptation to a microgravity environment includes physiological changes to the cardiovascular-respiratory, musculoskeletal, and neurosensory systems. Many of these alterations emerge even during space flights of short duration. Therefore, the advancement of manned space flight from Shuttle to Space Station Freedom (SSF) requires development of effective methods for augmenting the ability of humans to maintain functional performance. Thus, it is the goal of NASA to minimize the consequences of microgravity-induced deconditioning to provide optimal in-flight performance (intra- and extra-vehicular activities), suitable return to a pedestrian environment, and nominal physiological postflight recovery for an expeditious return-to-flight physical status.
Technical Paper

Performance Evaluation of Candidate Space Suit Elements for the Next Generation Orbital EMU

1992-07-01
921344
The projections of increased Extravehicular Activity (EVA) operations for the Space Station Freedom (SSF) resulted in the development of advanced space suit technologies to increase EVA efficiency. To eliminate the overhead of denitrogenation, candidate higher-operating pressure suit technologies were developed. The AX-5 all metallic, multi-bearing technologies were developed at the Ames Research Center, and the Mk. III fabric and metallic technologies were developed at the Johnson Space Center. Following initial technology development, extensive tests and analyses were performed to evaluate all aspects of candidate technology performance. The current Space Shuttle space suit technologies were used as a baseline for evaluating those of the AX-5 and Mk. III. Tests included manned evaluations in the Weightless Environment Training Facility and KC-135 zero-gravity aircraft.
Technical Paper

Overview of NASA's Thermal Control System Development for Exploration Project

2009-07-12
2009-01-2436
NASA's Constellation Program includes the Orion, Altair, and Lunar Surface Systems (LSS) project offices. The first two elements, Orion and Altair, are manned space vehicles while the third element is broader and includes several subelements including Rovers and a Lunar Habitat. The upcoming planned missions involving these systems and vehicles include several risks and design challenges. Due to the unique thermal environment, many of these risks and challenges are associated with the vehicles' thermal control system. NASA's Exploration Systems Mission Directorate (ESMD) includes the Exploration Technology Development Program (ETDP). ETDP consists of several technology development projects. The project chartered with mitigating the aforementioned risks and design challenges is the Thermal Control System Development for Exploration Project.
Technical Paper

Noncondensible Gas, Mass, and Adverse Tilt Effects on the Start-up of Loop Heat Pipes

1999-07-12
1999-01-2048
In recent years, loop heat pipe (LHP) technology has transitioned from a developmental technology to one that is flight ready. The LHP is considered to be more robust than capillary pumped loops (CPL) because the LHP does not require any preconditioning of the system prior to application of the heat load, nor does its performance become unstable in the presence of two-phase fluid in the core of the evaporator. However, both devices have a lower limit on input power: below a certain power, the system may not start properly. The LHP becomes especially susceptible to these low power start-ups following diode operation, intentional shut-down, or very cold conditions. These limits are affected by the presence of adverse tilt, mass on the evaporator, and noncondensible gas in the working fluid.
Technical Paper

New Behavioral Paradigms for Virtual Human Models

2005-06-14
2005-01-2689
The earliest Digital Human Modeling systems were non-interactive analysis packages with crude graphics. Next generation systems added interactivity and articulated kinematic human models. The newest systems use real-time computer graphics, deformable figures, motion controllers, and user interfaces. Our long-term goal is to free the user as much as possible from interactive human model manipulation through direct understanding and execution of task instructions. We present a next generation DHM testbed that includes a scriptable interface, real-time collision-avoidance reach, empirical joint motion models, a versatile locomotion engine, motion capture and synthetic motion blends and combinations, and a smooth skinned scalable human model.
Technical Paper

Modeling of Membrane Processes for Air Revitalization and Water Recovery

1992-07-01
921352
Gas-separation and reverse-osmosis membrane models are being developed in conjunction with membrane testing at NASA JSC. The completed gas-separation membrane model extracts effective component permeabilities from multicomponent test data, and predicts the effects of flow configuration, operating conditions, and membrane dimensions on module performance. Variable feed- and permeate-side pressures are considered. The model has been applied to test data for hollow-fiber membrane modules with simulated cabin-air feeds. Results are presented for a membrane designed for air drying applications. Extracted permeabilities are used to predict the effect of operating conditions on water enrichment in the permeate. A first-order reverse-osmosis model has been applied to test data for spiral wound membrane modules with a simulated hygiene water feed. The model estimates an effective local component rejection coefficient under pseudo-steady-state conditions.
X