Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Validation Studies of the GRNTRN Code for Radiation Transport

2007-07-09
2007-01-3118
To meet the challenge of future deep space programs an accurate and efficient engineering code for analyzing the shielding requirements against high-energy galactic heavy radiations is needed. Such engineering design codes require establishing validation processes using laboratory ion beams and space flight measurements in realistic geometries. In consequence, a new version of the HZETRN code capable of simulating HZE ions with either laboratory or space boundary conditions is currently under development. The new code, GRNTRN, is based on a Green's function approach to the solution of Boltzmann's transport equation and like its predecessor is deterministic in nature. Code validation in the laboratory environment is addressed by showing that GRNTRN accurately predicts energy loss spectra as measured by solid-state detectors in ion beam experiments.
Technical Paper

Utilizing Exploration Life Support Technology on ISS - a Bold New Approach

1998-07-13
981808
A new life support approach is proposed for use on the International Space Station (ISS). This involves advanced technologies for water recovery and air revitalization, tested at the Johnson Space Center (JSC), including bioprocessing, reverse-osmosis and distillation, low power carbon dioxide removal, non-expendable trace contaminant control, and carbon dioxide reduction.
Technical Paper

Toward Human-Robot Interface Standards: Use of Standardization and Intelligent Subsystems for Advancing Human-Robotic Competency in Space Exploration

2006-07-17
2006-01-2019
NASA's plans to implement the Vision for Space Exploration include extensive human-robot cooperation across an enterprise spanning multiple missions, systems, and decades. To make this practical, strong enterprise-level interface standards (data, power, communication, interaction, autonomy, and physical) will be required early in the systems and technology development cycle. Such standards should affect both the engineer and operator roles that humans adopt in their interactions with robots. For the engineer role, standards will result in reduced development lead-times, lower cost, and greater efficiency in deploying such systems. For the operator role, standards will result in common autonomy and interaction modes that reduce operator training, minimize workload, and apply to many different robotic platforms. Reduced quantities of spare hardware could also be a benefit of standardization.
Technical Paper

Thermal Analysis of Compressible CO2 Flow for PFE TeSS Nozzle of Fire Detection System

2002-07-15
2002-01-2347
A thermal analysis of the compressible carbon dioxide (CO2) flow for the Portable Fire Extinguisher (PFE) system has been performed. A SINDA/FLUINT model has been developed for this analysis. The model includes the PFE tank and the Temporary Sleep Station (TeSS) nozzle, and both have an initial temperature of 72 °F. In order to investigate the thermal effect on the nozzle due to discharging CO2, the PFE TeSS nozzle pipe has been divided into three segments. This model also includes heat transfer predictions for PFE tank inner and outer wall surfaces. The simulation results show that the CO2 discharge rates and component wall temperatures fall within the requirements for the PFE system. The simulation results also indicate that after 50 seconds, the remaining CO2 in the tank may be near the triple point (gas, liquid and solid) state and, therefore, restricts the flow.
Journal Article

The Orion Air Monitor; an Optimized Analyzer for Environmental Control and Life Support

2008-06-29
2008-01-2046
This paper describes the requirements for and design implementation of an air monitor for the Orion Crew Exploration Vehicle (CEV). The air monitor is specified to monitor oxygen, nitrogen, water vapor, and carbon dioxide, and participates with the Environmental Control Life Support System (ECLSS) pressure control system and Atmosphere Revitalization System (ARS) to help maintain a breathable and safe environment. The sensing requirements are similar to those delivered by the International Space Station (ISS) air monitor, the Major Constituent Analyzer or MCA (1, 2 and 3), and the predecessors to that instrument, the Skylab Mass Spectrometer (4, 5), although with a shift in emphasis from extended operations to minimized weight. The Orion emphasis on weight and power, and relatively simpler requirements on operating life, allow optimization of the instrument toward the mass of a sensor assembly.
Technical Paper

The Orion Air Monitor Performance Model; Dynamic Simulations and Accuracy Assessments in the CEV Atmospheric Revitalization Unit Application

2009-07-12
2009-01-2521
The Orion Air Monitor (OAM), a derivative of the International Space Station's Major Constituent Analyzer (MCA) (1–3) and the Skylab Mass Spectrometer (4, 5), is a mass spectrometer-based system designed to monitor nitrogen, oxygen, carbon dioxide, and water vapor. In the Crew Exploration Vehicle, the instrument will serve two primary functions: 1) provide Environmental Control and Life Support System (ECLSS) data to control nitrogen and oxygen pressure, and 2) provide feedback the ECLSS water vapor and CO2 removal system for swing-bed control. The control bands for these ECLSS systems affect consumables use, and therefore launch mass, putting a premium on a highly accurate, fast-response, analyzer subsystem. This paper describes a dynamic analytical model for the OAM, relating the findings of that model to design features required for accuracies and response times important to the CEV application.
Technical Paper

The Importance of HEV Fuel Economy and Two Research Gaps Preventing Real World Implementation of Optimal Energy Management

2017-01-10
2017-26-0106
Optimal energy management of hybrid electric vehicles has previously been shown to increase fuel economy (FE) by approximately 20% thus reducing dependence on foreign oil, reducing greenhouse gas (GHG) emissions, and reducing Carbon Monoxide (CO) and Mono Nitrogen Oxide (NOx) emissions. This demonstrated FE increase is a critical technology to be implemented in the real world as Hybrid Electric Vehicles (HEVs) rise in production and consumer popularity. This review identifies two research gaps preventing optimal energy management of hybrid electric vehicles from being implemented in the real world: sensor and signal technology and prediction scope and error impacts. Sensor and signal technology is required for the vehicle to understand and respond to its environment; information such as chosen route, speed limit, stop light locations, traffic, and weather needs to be communicated to the vehicle.
Technical Paper

The Impact of Trace Contaminants on the Shuttle Orbiter Regenerative CO2 Removal System

1995-07-01
951540
There is a possibility that trace contaminants in the Shuttle Orbiter cabin atmosphere may chemically react with amine beads found in the Regenerative Carbon Dioxide Removal System and degrade system performance. Two contaminant compounds were exposed to the amine beads, and performance changes were measured. Acetone was tested because it is sometimes found in small but appreciable quantities in the cabin, and it has chemical properties that make it a potential poison. Halon 1301 was tested because it is the fire extinguishant, and a discharge of a Halon canister would trigger high concentrations in the cabin. Acetone was shown to be weakly and reversibly adsorbed. It does not poison the bed, and the RCRS was shown to remove small quantities of acetone. Halon was shown to be inert to the amine. It does not poison the RCRS, and is not removed by the RCRS.
Technical Paper

The Design and Testing of a Fully Redundant Regenerative CO2 Removal System (RCRS) for the Shuttle Orbiter

2001-07-09
2001-01-2420
Research into increased capacity solid amine sorbents has found a candidate (SA9T) that will provide enough increase in cyclic carbon dioxide removal capacity to produce a fully redundant Regenerative Carbon Dioxide Removal System (RCRS). This system will eliminate the need for large quantities of backup LiOH, thus gaining critical storage space on board the shuttle orbiter. This new sorbent has shown an ability to package two fully redundant (four) sorbent beds together with their respective valves, fans and plumbing to create two operationally independent systems. The increase in CO2 removal capacity of the new sorbent will allow these two systems to fit within the envelope presently used by the RCRS. This paper reports on the sub-scale amine testing performed in support of the development effort. In addition, this paper will provide a preliminary design schematic of a fully redundant RCRS.
Technical Paper

The Advanced Design of a Liquid Cooling Garment Through Long-Term Research: Implications of the Test Results on Three Different Garments

2009-07-12
2009-01-2517
The most recent goal of our research program was to identify the optimal features of each of three garments to maintain core temperature and comfort under intensive physical exertion. Four males and 2 females between the ages of 22 and 46 participated in this study. The garments evaluated were the MACS-Delphi, Russian Orlan, and NASA LCVG. Subjects were tested on different days in 2 different environmental chamber temperature/humidity conditions (24°C/H∼28%; 35°C/H∼20%). Each session consisted of stages of treadmill walking/running (250W to 700W at different stages) and rest. In general, the findings showed few consistent differences among the garments. The MACS-Delphi was better able to maintain subjects within a skin and core temperature comfort zone than was evident in the other garments as indicated by a lesser fluctuation in temperatures across physical exertion levels.
Technical Paper

Testing of the Prototype Plant Research Unit Subsystems

1996-07-01
961507
The Plant Research Unit (PRU) is currently under development by the Space Station Biological Research Project (SSBRP) team at NASA Ames Research Center (ARC) with a scheduled launch in 2001. The goal of the project is to provide a controlled environment that can support seed-to-seed and other plant experiments for up to 90 days. This paper describes testing conducted on the major PRU prototype subsystems. Preliminary test results indicate that the prototype subsystem hardware can meet most of the SSBRP science requirements within the Space Station mass, volume, power and heat rejection constraints.
Technical Paper

Testing of an Integrated Air Revitalization System

1995-07-01
951661
Long-duration missions in space will require regenerative air revitalization processes. Human testing of these regenerative processes is necessary to provide focus to the system development process and to provide realistic metabolic and hygiene inputs. To this end, the Lyndon B. Johnson Space Center (JSC), under the sponsorship of NASA Headquarters Office of Life and Microgravity Sciences and Applications, is implementing an Early Human Testing (EHT) Project. As part of this project, an integrated physicochemical Air Revitalization System (ARS) is being developed and tested in JSC's Life Support Systems Integration Facility (LSSIF). The components of the ARS include a Four-Bed Molecular Sieve (4BMS) Subsystem for carbon dioxide (CO2) removal, a Sabatier CO2 Reduction Subsystem (CRS), and a Solid Polymer Electrolyte (SPE)™ Oxygen Generation Subsystem (OGS). A Trace Contaminant Control Subsystem (TCCS) will be incorporated at a later date.
Technical Paper

Testing of an Amine-Based Pressure-Swing System for Carbon Dioxide and Humidity Control

2007-07-09
2007-01-3156
In a crewed spacecraft environment, atmospheric carbon dioxide (CO2) and moisture control are crucial. Hamilton Sundstrand has developed a stable and efficient amine-based CO2 and water vapor sorbent, SA9T, that is well suited for use in a spacecraft environment. The sorbent is efficiently packaged in pressure-swing regenerable beds that are thermally linked to improve removal efficiency and minimize vehicle thermal loads. Flows are all controlled with a single spool valve. This technology has been baselined for the new Orion spacecraft. However, more data was needed on the operational characteristics of the package in a simulated spacecraft environment. A unit was therefore tested with simulated metabolic loads in a closed chamber at Johnson Space Center during the last third of 2006. Tests were run at a variety of cabin temperatures and with a range of operating conditions varying cycle time, vacuum pressure, air flow rate, and crew activity levels.
Technical Paper

Standardized Radiation Shield Design Method: 2005 HZETRN

2006-07-17
2006-01-2109
Research committed by the Langley Research Center through 1995 resulting in the HZETRN code provides the current basis for shield design methods according to NASA STD-3000 (2005). With this new prominence, the database, basic numerical procedures, and algorithms are being re-examined with new methods of verification and validation being implemented to capture a well defined algorithm for engineering design processes to be used in this early development phase of the Bush initiative. This process provides the methodology to transform the 1995 HZETRN research code into the 2005 HZETRN engineering code to be available for these early design processes. In this paper, we will review the basic derivations including new corrections to the codes to insure improved numerical stability and provide benchmarks for code verification.
Technical Paper

Spacesuit Radiation Shield Design Methods

2006-07-17
2006-01-2110
Meeting radiation protection requirements during EVA is predominantly an operational issue with some potential considerations for temporary shelter. The issue of spacesuit shielding is mainly guided by the potential of accidental exposure when operational and temporary shelter considerations fail to maintain exposures within operational limits. In this case, very high exposure levels are possible which could result in observable health effects and even be life threatening. Under these assumptions, potential spacesuit radiation exposures have been studied using known historical solar particle events to gain insight on the usefulness of modification of spacesuit design in which the control of skin exposure is a critical design issue and reduction of blood forming organ exposure is desirable.
Technical Paper

Solar Proton Event Observations at Mars with MARIE

2003-07-07
2003-01-2329
The 2001 Mars Odyssey spacecraft Martian Radiation Environment Experiment (MARIE) is a solid-state silicon telescope high-energy particle detector designed to measure galactic cosmic radiation (GCR) and solar particle events (SPEs) in the 20 – 500 MeV/nucleon energy range. In this paper we discuss the instrument design and focus on the observations and measurements of SPEs at Mars. These are the first-ever SPE measurements at Mars. The measurements are compared with the geostationary GOES satellite SPE measurements. We also discuss some of the current interplanetary particle propagation and diffusion theories and models. The MARIE SPE measurements are compared with these existing models.
Technical Paper

Smoke Detection for the Orion Crew Exploration Vehicle

2009-07-12
2009-01-2542
The Orion Crew Exploration Vehicle (CEV) requires a smoke detector for the detection of particulate smoke products as part of the Fire Detection and Suppression (FDS) system. The smoke detector described in this paper is an adaptation of a mature commercial aircraft design for manned spaceflight. Changes made to the original design include upgrading the materials and electronics to space-qualified components, and modifying the mechanical design to withstand launch and landing loads. The results of laboratory characterization of the response of the new design to test particles are presented.
Technical Paper

Simulation Study of Space Suit Thermal Control

2000-07-10
2000-01-2391
Automatic thermal comfort control for the minimum consumables PLSS is undertaken using several control approaches. Accuracy and performance of the strategies using feedforward, feedback, and gain scheduling are evaluated through simulation, highlighting their advantages and limitations. Implementation issues, consumable usage, and the provision for the extension of these control strategies to the cryogenic PLSS are addressed.
Technical Paper

Shielding Transmission Validation with Solid State Detectors

2003-07-07
2003-01-2331
As shielding materials are developed for protection against the hazards of galactic cosmic rays, it is desirable to develop a protocol for rapid assessment of shielding properties. Solid state energy loss detectors are often used to estimate the charge and energy of particles in ion beam experiments. The direct measurement is energy deposited in the detector. As a means of separating the charge components in typical shield transmission studies with observation, a stack of many such detectors is used. With high-energy beams and thin targets, surviving primaries and fragments emerging from the target have nearly-equal velocities and deposited energy scales with the square of the charge, simplifying the data analysis. The development of a transport model for the shield and detector arrangement and evaluation of prediction of the energy loss spectrum for direct comparison with the experimentally derived data allows a rapid assessment of the shield transmission characteristics.
Technical Paper

SAWD II Subsystem Integration into the Variable Pressure Growth Chamber: A Systems Level Analysis Using CASE/A

1994-06-01
941451
The NASA Johnson Space Center has plans to integrate a Solid Amine Water Desorbed (SAWD II) carbon dioxide removal subsystem into the Variable Pressure Growth Chamber (VPGC). The SAWD II subsystem will be used to remove any excess carbon dioxide (CO2) input into the VPGC which is not assimilated by the plants growing in the chamber. An analysis of the integrated VPGC-SAWD II system was performed using a mathematical model of the system implemented in the Computer-Aided System Engineering and Analysis (CASE/A) package. The analysis consisted of an evaluation of the SAWD II subsystem configuration within the VPGC, the planned operations for the subsystem, and the overall performance of the subsystem and other VPGC subsystems. Based on the model runs, recommendations were made concerning the SAWD II subsystem configuration and operations, and the chambers' automatic CO2 injection control subsystem.
X