Refine Your Search

Topic

Author

Search Results

Technical Paper

Validation Studies of the GRNTRN Code for Radiation Transport

2007-07-09
2007-01-3118
To meet the challenge of future deep space programs an accurate and efficient engineering code for analyzing the shielding requirements against high-energy galactic heavy radiations is needed. Such engineering design codes require establishing validation processes using laboratory ion beams and space flight measurements in realistic geometries. In consequence, a new version of the HZETRN code capable of simulating HZE ions with either laboratory or space boundary conditions is currently under development. The new code, GRNTRN, is based on a Green's function approach to the solution of Boltzmann's transport equation and like its predecessor is deterministic in nature. Code validation in the laboratory environment is addressed by showing that GRNTRN accurately predicts energy loss spectra as measured by solid-state detectors in ion beam experiments.
Technical Paper

Utilization of Virtual Environments for Astronaut Crew Training

2000-07-10
2000-01-2361
The development of virtual environment technology at NASA Ames Research Center and other research institutions has created opportunities for enhancing human performance. The application of this technology to training astronaut flight crews planning to go onboard the International Space Station has already begun at the NASA Johnson Space Center. A unique application of virtual environments to crew training is envisioned at NASA Ames Research Center which combines state of the art technology with haptic feedback to create a method for training crewmembers on critical life sciences operations which require fine motor skills. This paper describes such a concept, known as the Virtual Glovebox, as well as surveys other applications of virtual environments to astronaut crew training.
Technical Paper

The Telescience Support Center at NASA Ames Research Center

2000-07-10
2000-01-2362
NASA is developing a Telescience Support Center (TSC) at the Ames Research Center. The center will be part of the infrastructure needed to conduct research in the Space Station and has been tailored to satisfy the requirements of the fundamental biology research program. The TSC will be developed from existing facilities at the Ames Research Center. Ground facility requirements have been derived from the TSC functional requirements. Most of the facility requirements will be satisfied with minor upgrades and modifications to existing buildings and laboratories. The major new development will be a modern data processing system. The TSC is being developed in three phases which correspond to deliveries of Biological Research Facility equipment to Station. The first phase will provide support for early hardware in flight Utilization Flight −1 (UF-1) in 2001.
Technical Paper

The General Purpose Work Station, A Spacious Microgravity Workbench

1992-07-01
921394
The General Purpose Work Station (GPWS) is a laboratory multi-use facility, as demonstrated during the Spacelab Life Sciences 1 (SLS-1) flight. The unit provided particulate containment under varying conditions, served as an effective work space for manipulating live animals, e.g., rats, served as a containment facility for fixatives, and was proposed for use to conduct in-flight maintenance during connector pin repair. The cabinet has a front door large enough to allow installation of a full-size microscope in-flight and is outfitted with a side window to allow delivery of items into the cabinet without exposure to the spacelab atmosphere. Additional support subsystems include inside cabinet mounting, surgical glove fine manipulations capability, and alternating or direct current power supply for experiment equipment, as will be demonstrated during Spacelab J.
Technical Paper

Spacesuit Radiation Shield Design Methods

2006-07-17
2006-01-2110
Meeting radiation protection requirements during EVA is predominantly an operational issue with some potential considerations for temporary shelter. The issue of spacesuit shielding is mainly guided by the potential of accidental exposure when operational and temporary shelter considerations fail to maintain exposures within operational limits. In this case, very high exposure levels are possible which could result in observable health effects and even be life threatening. Under these assumptions, potential spacesuit radiation exposures have been studied using known historical solar particle events to gain insight on the usefulness of modification of spacesuit design in which the control of skin exposure is a critical design issue and reduction of blood forming organ exposure is desirable.
Technical Paper

Space Station Lessons Learned from NASA/Mir Fundamental Biology Research Program

1998-07-13
981606
Ames Research Center's Life Sciences Division was responsible for managing the development of fundamental biology flight experiments during the Phase 1 NASA/Mir Science Program. Beginning with astronaut Norm Thagard's historic March, 1995 Soyuz rendezvous with the Mir station and continuing through Andy Thomas' successful return from Mir onboard STS-91 in June, 1998, the NASA/Mir Science Program has provided scientists with unparalleled long duration research opportunities. In addition, the Phase 1 program has yielded many valuable lessons to program and project management personnel who are managing the development of future International Space Station payload elements. This paper summarizes several of the key space station challenges faced and associated lessons learned by the Ames Research Center Fundamental Biology Research Project.
Technical Paper

Space Life Support from the Cellular Perspective

2001-07-09
2001-01-2229
Determining the fundamental role of gravity in vital biological systems in space is one of six science and research areas that provides the philosophical underpinning for why NASA exists. The study of cells, tissues, and microorganisms in a spaceflight environment holds the promise of answering multiple intriguing questions about how gravity affects living systems. To enable these studies, specimens must be maintained in an environment similar to that used in a laboratory. Cell culture studies under normal laboratory conditions involve maintaining a highly specialized environment with the necessary temperature, humidity control, nutrient, and gas exchange conditions. These same cell life support conditions must be provided by the International Space Station (ISS) Cell Culture Unit (CCU) in the unique environment of space. The CCU is a perfusion-based system that must function in microgravity, at unit gravity (1g) on earth, and from 0.1g up to 2g aboard the ISS centrifuge rotor.
Technical Paper

Single Loop for Cell Culture (SLCC) – Development and Spaceflight Qualification of a Perfusion Cell Culture System

2006-07-17
2006-01-2212
Single Loop for Cell Culture (SLCC) consists of individual, self-contained, spaceflight cell culture systems with capabilities for automated growth initiation, feeding, sub-culturing and sampling. The cells are grown and contained within a rigid cell specimen chamber (CSC). Bladder tanks provide flush and media fluid. SLCC uses active perfusion flow to provide nutrients and gas exchange, and to dilute waste products by expelling depleted media fluid into a waste bladder tank. The cells can be grown quiescently, or suspended using magnetically coupled stirrers. This paper describes the functional and safety design features, the operational modes and the spaceflight qualification processes including science validation tests, using yeast as a model organism.
Technical Paper

Shielding Transmission Validation with Solid State Detectors

2003-07-07
2003-01-2331
As shielding materials are developed for protection against the hazards of galactic cosmic rays, it is desirable to develop a protocol for rapid assessment of shielding properties. Solid state energy loss detectors are often used to estimate the charge and energy of particles in ion beam experiments. The direct measurement is energy deposited in the detector. As a means of separating the charge components in typical shield transmission studies with observation, a stack of many such detectors is used. With high-energy beams and thin targets, surviving primaries and fragments emerging from the target have nearly-equal velocities and deposited energy scales with the square of the charge, simplifying the data analysis. The development of a transport model for the shield and detector arrangement and evaluation of prediction of the energy loss spectrum for direct comparison with the experimentally derived data allows a rapid assessment of the shield transmission characteristics.
Technical Paper

Results and Analysis from Reduced Gravity Experiments of the Flexible Membrane Commode Apparatus

2009-07-12
2009-01-2344
Two separate experimental rigs used in tests on NASA and Zero-G Corporation aircrafts flying low-gravity trajectories, and in the NASA 2.2 Second Drop Tower have been developed to test the functioning of the Flexible Membrane Commode (FMC) concept under reduced gravity conditions. The first rig incorporates the flexible, optically opaque membrane bag and the second rig incorporates a transparent chamber with a funnel assembly for evacuation that approximates the size of the membrane bag. Different waste dispensers have been used including a caulking gun and flexible hose assembly, and an injection syringe. Waste separation mechanisms include a pair of wire cutters, an iris mechanism, as well as discrete slug injection. The experimental work is described in a companion paper. This paper focuses on the obtained results and analysis of the data.
Technical Paper

Protein-based Sensors for Environmental Monitoring

2006-07-17
2006-01-2177
Biomolecules exhibit specific binding and high affinity for their ligands. These properties can be exploited to produce sensitive, specific, real-time sensors for analytes that cannot be readily monitored by other methods. Several technologies for environmental monitoring using proteins are currently being developed. We discuss specific challenges to practical application of a family of protein-based sensors derived from bacterial periplasmic binding proteins. We also present recent work to address these challenges.
Technical Paper

Microgravity Flight - Accommodating Non-Human Primates

1994-06-01
941287
Spacelab Life Sciences-3 (SLS-3) was scheduled to be the first United States man-tended microgravity flight containing Rhesus monkeys. The goal of this flight as in the five untended Russian COSMOS Bion flights and an earlier American Biosatellite flight, was to understand the biomedical and biological effects of a microgravity environment using the non-human primate as human surrogate. The SLS-3/Rhesus Project and COSMOS Primate-BIOS flights all utilized the rhesus monkey, Macaca mulatta. The ultimate objective of all flights with an animal surrogate has been to evaluate and understand biological mechanisms at both the system and cellular level, thus enabling rational effective countermeasures for future long duration human activity under microgravity conditions and enabling technical application to correction of common human physiological problems within earth's gravity, e.g., muscle strength and reloading, osteoporosis, immune deficiency diseases.
Technical Paper

Mass Transport in a Spaceflight Plant Growth Chamber

1998-07-13
981553
The Plant Generic BioProcessing Apparatus (PGBA), a plant growth facility developed for commercial space biotechnology research, has flown successfully on 3 spaceflight missions for 4, 10 and 16 days. The environmental control systems of this plant growth chamber (28 liter/0.075 m2) provide atmospheric, thermal, and humidity control, as well as lighting and nutrient supply. Typical performance profiles of water transpiration and dehumidification, carbon dioxide absorption (photosynthesis) and respiration rates in the PGBA unit (on orbit and ground) are presented. Data were collected on single and mixed crops. Design options and considerations for the different sub-systems are compared with those of similar hardware.
Technical Paper

Life Sciences Research in the Centrifuge Accommodation Module of the International Space Station

2000-07-10
2000-01-2247
The Centrifuge Accommodation Module (CAM) will be the home of the fundamental biology research facilities on the International Space Station (ISS). These facilities are being built by the Biological Research Project (BRP), whose goal is to oversee development of a wide variety of habitats and host systems to support life sciences research on the ISS. The habitats and host systems are designed to provide life support for a variety of specimens including cells, bacteria, yeast, plants, fish, rodents, eggs (e.g., quail), and insects. Each habitat contains specimen chambers that allow for easy manipulation of specimens and alteration of sample numbers. All habitats are capable of sustaining life support for 90 days and have automated as well as full telescience capabilities for sending habitat parameters data to investigator homesite laboratories.
Technical Paper

Integration and Synthesis in Astrobiology

2000-07-10
2000-01-2341
Astrobiology is one of the most highly integrative scientific efforts ever undertaken, relying on the synthesis of sciences from astronomy to zoology and geology to genomics to discover the thread of life in the universe. These sciences must be further integrated with the technological revolutions in biotechnology, microminiaturization and information technology to realize the vast potential offered by NASA's mission suites. This paper discusses development of the Astrobiology Roadmap and novel management approaches which attempt to bring in the best scientific and technical talent available to bear on Astrobiology's goals, while simultaneously minimizing the overhead and time to flight for Astrobiology payloads.
Technical Paper

Innovative Concepts for Planetary EVA Access

2007-07-09
2007-01-3245
This study introduces several new concepts for suited EVA astronaut ingress/egress (departure and return) from a pressurized planetary surface habitat, based on use of a rear-entry suit and a suit lock or suitport. We provide insight into key operational aspects and integration issues, as well as the results of a requirements analysis and risk assessment of the concepts. The risk assessment included hazard analysis, hazard mitigation techniques, failure mode assessment, and operational risk assessment. Also included are performance and mass estimates for the egress concepts, and concepts for integration of the egress concepts with potential planetary habitat designs.
Technical Paper

Identification of Extraterrestrial Microbiology Using Fluorescent Analysis Techniques

1999-07-12
1999-01-2207
One of the key questions addressed in the field of Astrobiology is based upon the assumption that life exists, or at one time existed, in locations throughout the universe. However, this assumption is just that, an assumption. No definitive proof exists. On Earth, life has been found to exist in many diverse environments. We believe that this tendency towards diversity supports the assumption that life could exist wherever environmental conditions are right to support it. There are several locations within our Solar System which might support environments which are conducive to life. However, to conclusively establish the existence of life in such locations we must be capable of sensing generic life forms. This paper provides a summary of several innovative techniques based on the use of fluorescent analysis for the direct detection of extraterrestrial life forms.
Technical Paper

Fundamental Biology Research During the NASA/Mir Science Program

1995-07-01
951477
A multi-discipline, multi-year collaborative spaceflight research program (NASA/Mir Science Program) has been established between the United States and Russia utilizing the capabilities of the Russian Mir Space Station and the NASA space shuttle fleet. As a key research discipline to be carried out onboard Mir, fundamental biology research encompasses three basic objectives: first, to investigate long-term effects of microgravity upon plant and avian physiology and developmental biology; second, to investigate the long-term effects of microgravity upon circadian rhythm patterns of biological systems; and third, to characterize the long-term radiation environment (internal and external) of the Russian Mir space station. The first joint U.S./Russian fundamental biology research on-board Mir is scheduled to begin in March, 1995 with the Mir mission 18 and conclude with the docking of the U.S. shuttle to Mir in June, 1995 during the STS-71, Spacelab/Mir Mission-1 (SLM-1).
Technical Paper

Development of the Standard Interface Glovebox (SIGB) for use on Shuttle, MIR, and International Space Station

1997-07-01
972310
An innovative design that meets both Shuttle and Space Station requirements for a user-friendly, volume-efficient, portable glovebox system has been developed at Ames Research Center (ARC). The Standard Interface Glovebox (SIGB) has been designed as a two Middeck locker-sized system that mounts in a Middeck Rack Structure (MRS) or in any rack using the Standard Interface Rack (SIR) rail spacing. The MRS provides structural support for the SIGB during all aspects of the mission and is an interface consistent with NASA's desire for commonality of mechanical interfaces, allowing the SIGB to be flown on essentially any manned space platform. The SIGB provides an enclosed work volume which operates at negative pressure relative to ambient, as well as excellent lighting and ample work volume for anticipated life sciences-related experiment operations inflight.
Technical Paper

Development of an In-Flight Refill Unit for Replenishing Research Animal Drinking Water

1994-06-01
941283
The Spacelab Life Sciences 2 (SLS-2) mission became NASA's longest duration Shuttle mission, lasting fourteen days, when Columbia landed on November 1, 1993. Located within the Spacelab were a total of 48 laboratory rats which were housed in two Research Animal Holding Facilities (RAHFs) developed by the Space Life Sciences Payloads Office (SLSPO) at Ames Research Center. In order to properly maintain the health and well-being of these important research animals, sufficient quantities of food and water had to be available for the duration of the mission. An Inflight Refill Unit was developed by the SLSPO to replenish the animals' drinking water inflight using the Shuttle potable water system in the middeck galley as the source of additional water. The Inflight Refill Unit consists of two major subsystems, a Fluid Pumping Unit (FPU) and a Collapsible Water Reservoir (CWR).
X