Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Zero-Venting, Regenerable, Lightweight Heat Rejection for EVA Suits

2005-07-11
2005-01-2974
Future space exploration missions will require a lightweight spacesuit that expends no consumables. This paper describes the design and performance of a prototype heat rejection system that weighs less than current systems and vents zero water. The system uses regenerable LiCl/water absorption cooling. Absorption cooling boosts the heat absorbed from the crew member to a high temperature for rejection to space from a compact, non-venting radiator. The system is regenerated by heating to 100°C for two hours. The system provides refrigeration at 17°C and rejects heat at temperatures greater than 50°C. The overall cooling capacity is over 100 W-hr/kg.
Technical Paper

Wissler Simulations of a Liquid Cooled and Ventilation Garment (LCVG) for Extravehicular Activity (EVA)

2006-07-17
2006-01-2238
In order to provide effective cooling for astronauts during extravehicular activities (EVAs), a liquid cooling and ventilation garment (LCVG) is used to remove heat by a series of tubes through which cooling water is circulated. To better predict the effectiveness of the LCVG and determine possible modifications to improve performance, computer simulations dealing with the interaction of the cooling garment with the human body have been run using the Wissler Human Thermal Model. Simulations have been conducted to predict the heat removal rate for various liquid cooled garment configurations. The current LCVG uses 48 cooling tubes woven into a fabric with cooling water flowing through the tubes. The purpose of the current project is to decrease the overall weight of the LCVG system. In order to achieve this weight reduction, advances in the garment heat removal rates need to be obtained.
Technical Paper

Utilization of On-Site Resources for Regenerative Life Support Systems at Lunar and Martian Outposts

1993-07-01
932091
Lunar and martian materials can be processed and used at planetary outposts to reduce the need (and thus the cost) of transporting supplies from Earth. A variety of uses for indigenous, on-site materials have been suggested, including uses as rocket propellants, construction materials, and life support materials. Utilization of on-site resources will supplement Regenerative Life Support Systems (RLSS) that will be needed to regenerate air, water, and wastes, and to produce food (e.g., plants) for human consumption during long-duration space missions.
Technical Paper

Thermal Vacuum Testing of the Orbiting Carbon Observatory Instrument

2008-06-29
2008-01-2036
The Orbiting Carbon Observatory (OCO) instrument is scheduled for launch onboard an Orbital Sciences Corporation LEOStar-2 architecture spacecraft in December 2008. The instrument will collect data to identify CO2 sources and sinks and quantify their seasonal variability. OCO observations will permit the collection of spatially resolved, high resolution spectroscopic observations of CO2 and O2 absorption in reflected sunlight over both continents and oceans. OCO has three bore-sighted, high resolution, grating spectrometers which share a common telescope with similar optics and electronics. A 0.765 μm channel will be used for O2 observations, while the weak and strong CO2 bands will be observed with 1.61 μm and 2.06 μm channels, respectively. The OCO spacecraft circular polar orbit will be sun-synchronous with an inclination of 98.2 degrees, mean altitude of 705 km and 98.9 minute orbit period.
Technical Paper

Thermal Performance of Space Suit Elements with Aerogel Insulation for Moon and Mars Exploration

2006-07-17
2006-01-2235
Flexible fiber-reinforced aerogel composites were studied for use as insulation materials of a future space suit for Moon and Mars exploration. High flexibility and good thermal insulation properties of fiber-reinforced silica aerogel composites at both high and low vacuum conditions make it a promising insulation candidate for the space suit application. This paper first presents the results of a durability (mechanical cycling) study of these aerogels composites in the context of retaining their thermal performance. The study shows that some of these Aerogels materials retained most of their insulation performance after up to 250,000 cycles of mechanical flex cycling. This paper also examines the problem of integrating these flexible aerogel composites into the current space suit elements.
Technical Paper

Thermal Performance Evaluation of a Small Loop Heat Pipe for Space Applications

2003-07-07
2003-01-2688
A Small Loop Heat Pipe (SLHP) featuring a wick of only 1.27 cm (0.5 inches) in diameter has been designed for use in spacecraft thermal control. It has several features to accommodate a wide range of environmental conditions in both operating and non-operating states. These include flexible transport lines to facilitate hardware integration, a radiator capable of sustaining over 100 freeze-thaw cycles using ammonia as a working fluid and a structural integrity to sustain acceleration loads up to 30 g. The small LHP has a maximum heat transport capacity of 120 Watts with thermal conductance ranging from 17 to 21 W/°C. The design incorporates heaters on the compensation chamber to modulate the heat transport from full-on to full-stop conditions. A set of start up heaters are attached to the evaporator body using a specially designed fin to assist the LHP in starting up when it is connected to a large thermal mass.
Technical Paper

Thermal Conductivity of Lofty Nonwovens in Space and Planetary Vacuum Environment

2001-07-09
2001-01-2166
For planetary exploration, new thermal insulation materials are needed to deal with unique environmental conditions presented to extravehicular activity (EVA). The thermal insulation material and system used in the existing space suit were specifically designed for low orbit environment. They are not adequate for low vacuum condition commonly found in planetary environments with a gas atmosphere. This study attempts to identify the types of lofty nonwoven thermal insulation materials and the construction parameters that yield the best performance for such application. Lofty nonwovens with different construction parameters are evaluated for their thermal conductivity performance. Three different types of fiber material: solid round fiber, hollow fiber, and grooved fiber, with various denier, needling intensity, and web density were evaluated.
Technical Paper

Thermal Analysis of Lightweight Liquid Cooling Garments Using Highly Conductive Materials

2005-07-11
2005-01-2972
This paper presents the analysis findings of a study reducing the overall mass of the lightweight liquid cooling garment (LCG). The LCG is a garment worn by crew to actively cool the body, for spacesuits and launch/entry suits. A mass reduction of 66% was desired for advanced missions. A thermal math model of the LCG was developed to predict its performance when various mass-reducing changes were implemented. Changes included varying the thermal conductivity and thickness of the garment or of the coolant tubes servicing the garment. A second model was developed to predict behavior of the suit when the cooling tubes were to be removed, and replaced with a highly-conducting (waterless) material. Findings are presented that show significant reductions in weight are theoretically possible by improving conductivity in the garment material.
Technical Paper

The Porous Plate Sublimator as the X-38/CRV (Crew Return Vehicle) Orbital Heat Sink

1999-07-12
1999-01-2004
A porous plate sublimator (based on an existing Lunar Module LM-209 design) is baselined as a heat rejection device for the X-38 vehicle due to its simplicity, reliability, and flight readiness. The sublimator is a passive device used for rejecting heat to the vacuum of space by sublimating water to obtain efficient heat rejection in excess of 1,000 Btu/lb of water. It is ideally suited for the X-38/CRV mission as it requires no active control, has no moving parts, has 100% water usage efficiency, and is a well-proven technology. Two sublimators have been built and tested for the X-38 program, one of which will fly on the NASA V-201 space flight demonstrator vehicle in 2001. The units satisfied all X-38 requirements with margin and have demonstrated excellent performance. Minor design changes were made to the LM-209 design for improved manufacturability and parts obsolescence.
Technical Paper

Testing of the Multi-Fluid Evaporator Prototype

2008-06-29
2008-01-2166
Hamilton Sundstrand has developed a scalable evaporative heat rejection system called the Multi-Fluid Evaporator (MFE). It was designed to support the Orion Crew Module and to support future Constellation missions. The MFE would be used from Earth sea level conditions to the vacuum of space. This system combines the functions of the Space Shuttle flash evaporator and ammonia boiler into a single compact package with improved freeze-up protection. The heat exchanger core is designed so that radial flow of the evaporant provides increasing surface area to keep the back pressure low. The multiple layer construction of the core allows for efficient scale up to the desired heat rejection rate. A full-scale unit uses multiple core sections that, combined with a novel control scheme, manage the risk of freezing the heat exchanger cores. A four-core MFE prototype was built in 2007.
Technical Paper

Testing of an Amine-Based Pressure-Swing System for Carbon Dioxide and Humidity Control

2007-07-09
2007-01-3156
In a crewed spacecraft environment, atmospheric carbon dioxide (CO2) and moisture control are crucial. Hamilton Sundstrand has developed a stable and efficient amine-based CO2 and water vapor sorbent, SA9T, that is well suited for use in a spacecraft environment. The sorbent is efficiently packaged in pressure-swing regenerable beds that are thermally linked to improve removal efficiency and minimize vehicle thermal loads. Flows are all controlled with a single spool valve. This technology has been baselined for the new Orion spacecraft. However, more data was needed on the operational characteristics of the package in a simulated spacecraft environment. A unit was therefore tested with simulated metabolic loads in a closed chamber at Johnson Space Center during the last third of 2006. Tests were run at a variety of cabin temperatures and with a range of operating conditions varying cycle time, vacuum pressure, air flow rate, and crew activity levels.
Technical Paper

Self-Sterilizing Properties of Martian Soil: Possible Nature & Implications

2000-07-10
2000-01-2343
As a result of the Viking missions in 1970s, the presence of a strong oxidant in Martian soil was suggested. Here we present a testable, by near-term missions, hypothesis that iron(VI) contributes to that oxidizing pool. Ferrate(VI) salts were studied for their spectral and oxidative properties and biological activities. Ferrate(VI) has distinctive spectroscopic features making it available for detection by remote sensing reflectance spectra and contact measurements via Mössbauer spectroscopy. The relevant miniaturized instrumentation has been developed or is underway, while XANES spectroscopy is shown to be a method of choice for the returned samples. Ferrate(VI) is capable of splitting water to yield oxygen, and oxidizing organic carbon to CO2. Organic oxidation was strongly abated after pre-heating ferrate, similar to the observations with Mars soil samples.
Technical Paper

Self-Deployable Foam Antenna Structures for Earth Observation Radiometer Applications

2006-07-17
2006-01-2064
The overall goal of this program was the development of a 10 m. diameter, self-deployable antenna based on an open-celled rigid polyurethane foam system. Advantages of such a system relative to current inflatable or self-deploying systems include high volumetric efficiency of packing, high restoring force, low (or no) outgassing, low thermal conductivity, high dynamic damping, mechanical isotropy, infinite shelf life, and easy fabrication with methods amenable to construction of large structures (i.e., spraying). As part of a NASA Phase II SBIR, Adherent Technologies and its research partners, Temeku Technologies, and NASA JPL/Caltech, conducted activities in foam formulation, interdisciplinary analysis, and RF testing to assess the viability of using open cell polyurethane foams for self-deploying antenna applications.
Journal Article

Selection Criteria and Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Advanced Spark-Ignition Engines

2017-03-28
2017-01-0868
We describe a study to identify potential biofuels that enable advanced spark ignition (SI) engine efficiency strategies to be pursued more aggressively. A list of potential biomass-derived blendstocks was developed. An online database of properties and characteristics of these bioblendstocks was created and populated. Fuel properties were determined by measurement, model prediction, or literature review. Screening criteria were developed to determine if a bioblendstock met the requirements for advanced SI engines. Criteria included melting point (or cloud point) < -10°C and boiling point (or T90) <165°C. Compounds insoluble or poorly soluble in hydrocarbon were eliminated from consideration, as were those known to cause corrosion (carboxylic acids or high acid number mixtures) and those with hazard classification as known or suspected carcinogens or reproductive toxins.
Journal Article

Screening of Potential Biomass-Derived Streams as Fuel Blendstocks for Mixing Controlled Compression Ignition Combustion

2019-04-02
2019-01-0570
Mixing controlled compression ignition, i.e., diesel engines are efficient and are likely to continue to be the primary means for movement of goods for many years. Low-net-carbon biofuels have the potential to significantly reduce the carbon footprint of diesel combustion and could have advantageous properties for combustion, such as high cetane number and reduced engine-out particle and NOx emissions. We developed a list of over 400 potential biomass-derived diesel blendstocks and populated a database with the properties and characteristics of these materials. Fuel properties were determined by measurement, model prediction, or literature review. Screening criteria were developed to determine if a blendstock met the basic requirements for handling in the diesel distribution system and use as a blend with conventional diesel. Criteria included cetane number ≥40, flashpoint ≥52°C, and boiling point or T90 ≤338°C.
Technical Paper

SAWD II Subsystem Integration into the Variable Pressure Growth Chamber: A Systems Level Analysis Using CASE/A

1994-06-01
941451
The NASA Johnson Space Center has plans to integrate a Solid Amine Water Desorbed (SAWD II) carbon dioxide removal subsystem into the Variable Pressure Growth Chamber (VPGC). The SAWD II subsystem will be used to remove any excess carbon dioxide (CO2) input into the VPGC which is not assimilated by the plants growing in the chamber. An analysis of the integrated VPGC-SAWD II system was performed using a mathematical model of the system implemented in the Computer-Aided System Engineering and Analysis (CASE/A) package. The analysis consisted of an evaluation of the SAWD II subsystem configuration within the VPGC, the planned operations for the subsystem, and the overall performance of the subsystem and other VPGC subsystems. Based on the model runs, recommendations were made concerning the SAWD II subsystem configuration and operations, and the chambers' automatic CO2 injection control subsystem.
Technical Paper

Results of VPCAR Pilot Scale and System Level Tests for the Selective Oxidation of Ammonia to Nitrogen and Water

2005-07-11
2005-01-3034
The cost of delivering the payloads to space increases dramatically with distance and therefore missions to deep space place a strong emphasis on reducing launch weight and eliminating resupply requirements. The Vapor Phase Catalytic Ammonia Removal (VPCAR) system, which is being developed for water purification, is an example of this focus because it has no resupply requirements. A key step in the VPCAR system is the catalytic oxidation of ammonia and volatile hydrocarbons to benign compounds such as carbon dioxide, water, and nitrogen. Currently, platinum-based commercial oxidation catalysts are being used for these reactions. However, conventional platinum catalysts can convert ammonia (NH3) to NO and NO2 (collectively referred to as NOX), which are more hazardous than ammonia.
Technical Paper

Removal of Low Levels of Ammonium Ion From pacecraft Recycled Water

1999-07-12
1999-01-2119
Poly (vinyl chloride) (PVC) matrix membranes which incorporate the ionophore nonactin have been evaluated as cation exchange membranes for ammonium ion transport in an electrolytic cell configuration. Interest exists for the development of cation selective membranes for removal of low levels (<200ppm) of ammonium ions commonly found in recycled effluent streams in such diverse applications as expected in a Space Station and commercial fisheries. Ammonium ions are generated as a decomposition product of urea and over time build up in concentration, thus rendering the water unsuitable for human consumption. Nonactin is commonly used in a PVC matrix for ion-selective electrodes.
Technical Paper

Rapid Cycling CO2 and H2O Removal System for EMU

2006-07-17
2006-01-2198
Future National Aeronautics and Space Administration (NASA)-planned missions set stringent demands on the design of the Portable Life Support Systems (PLSS), requiring dramatic reductions in weight, decreased reliance on supplies and greater flexibility on the types of missions. Use of regenerable systems that reduce weight and volume of the Extravehicular Mobility Unit (EMU) is of critical importance to NASA, both for low orbit operations and for long duration manned missions. TDA Research, Inc. (TDA) is developing a high capacity, rapid cycling sorbent to control CO2 and humidity in the space suit ventilation loop. The sorbent can be regenerated using space vacuum during the EVA, eliminating all duration-limiting elements in the life support system. This paper summarizes the results of the sorbent development and testing, and evaluation efforts.
Technical Paper

Q-PCR Based Bioburden Assessment of Drinking Water Throughout Treatment and Delivery to the International Space Station

2005-07-11
2005-01-2932
Previous studies indicated evidence of opportunistic pathogens in samples obtained during missions to the International Space Station (ISS). This study utilized TaqMan quantitative PCR to determine specific gene abundance in potable and non-potable ISS waters. Probe and primer sets specific to the small subunit rRNA genes were designed and used to elucidate overall bacterial rRNA gene numbers. In addition, primer-probe sets specific for Burkholderia cepacia and Stenotrophomonas maltophilia were optimized and genes of these two opportunistic pathogens quantified in the pre- and post-flight drinking water as well as coolant waters. This Q-PCR approach supports findings of previous culture-based studies however; the culture based studies may have underestimated the microbial burden of ISS drinking water.
X