Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Zero-Venting, Regenerable, Lightweight Heat Rejection for EVA Suits

2005-07-11
2005-01-2974
Future space exploration missions will require a lightweight spacesuit that expends no consumables. This paper describes the design and performance of a prototype heat rejection system that weighs less than current systems and vents zero water. The system uses regenerable LiCl/water absorption cooling. Absorption cooling boosts the heat absorbed from the crew member to a high temperature for rejection to space from a compact, non-venting radiator. The system is regenerated by heating to 100°C for two hours. The system provides refrigeration at 17°C and rejects heat at temperatures greater than 50°C. The overall cooling capacity is over 100 W-hr/kg.
Technical Paper

Year-Long Evaluation of Trucks and Buses Equipped with Passive Diesel Particulate Filters

2002-03-04
2002-01-0433
A program has been completed to evaluate ultra-low sulfur diesel fuels and passive diesel particulate filters (DPFs) in truck and bus fleets operating in southern California. The fuels, ECD and ECD-1, are produced by ARCO (a BP Company) and have less than 15 ppm sulfur content. Vehicles were retrofitted with two types of catalyzed DPFs, and operated on ultra-low sulfur diesel fuel for over one year. Exhaust emissions, fuel economy and operating cost data were collected for the test vehicles, and compared with baseline control vehicles. Regulated emissions are presented from two rounds of tests. The first round emissions tests were conducted shortly after the vehicles were retrofitted with the DPFs. The second round emissions tests were conducted following approximately one year of operation. Several of the vehicles retrofitted with DPFs accumulated well over 100,000 miles of operation between test rounds.
Technical Paper

Wissler Simulations of a Liquid Cooled and Ventilation Garment (LCVG) for Extravehicular Activity (EVA)

2006-07-17
2006-01-2238
In order to provide effective cooling for astronauts during extravehicular activities (EVAs), a liquid cooling and ventilation garment (LCVG) is used to remove heat by a series of tubes through which cooling water is circulated. To better predict the effectiveness of the LCVG and determine possible modifications to improve performance, computer simulations dealing with the interaction of the cooling garment with the human body have been run using the Wissler Human Thermal Model. Simulations have been conducted to predict the heat removal rate for various liquid cooled garment configurations. The current LCVG uses 48 cooling tubes woven into a fabric with cooling water flowing through the tubes. The purpose of the current project is to decrease the overall weight of the LCVG system. In order to achieve this weight reduction, advances in the garment heat removal rates need to be obtained.
Technical Paper

Weathering of Thermal Control Coatings

2007-07-09
2007-01-3020
Spacecraft radiators reject heat to their surroundings. Radiators can be deployable or mounted on the body of the spacecraft. NASA's Crew Exploration Vehicle is to use body mounted radiators. Coatings play an important role in heat rejection. The coatings provide the radiator surface with the desired optical properties of low solar absorptance and high infrared emittance. These specialized surfaces are applied to the radiator panel in a number of ways, including conventional spraying, plasma spraying, or as an appliqué. Not specifically designed for a weathering environment, little is known about the durability of conventional paints, coatings, and appliqués upon exposure to weathering and subsequent exposure to solar wind and ultraviolet radiation exposure. In addition to maintaining their desired optical properties, the coatings must also continue to adhere to the underlying radiator panel.
Technical Paper

Vw Lupo, the WorldS First 3-Liter Car

2000-11-01
2000-01-C044
After the success of the 4-cylinder 1.9-liter TDI and SDI direct-injection diesel engines in the Passat, Jetta and Polo classes, a new 3-cylinder TDI has been developed for use in the "Lupo 3L,' a compact car with a fuel consumption of 3 liters per 100 km. A new injection system with unit injectors, together with a fully electronically controlled engine management system featuring drive-by-wire- technology, a turbocharger with variable turbine geometry and a fully automated mechanical gearbox and clutch, for the first time ensures the potential to meet the stringent D4 exhaust emissions level and to achieve excellent fuel economy. The wheel-torque based engine and gearbox management systems optimize engine operation in terms of efficiency and emissions.
Technical Paper

Virtual Investigation of Real Fuels by Means of 3D-CFD Engine Simulations

2019-09-09
2019-24-0090
The reduction of both harmful emissions (CO, HC, NOx, etc.) and gases responsible for greenhouse effects (especially CO2) are mandatory aspects to be considered in the development process of any kind of propulsion concept. Focusing on ICEs, the main development topics are today not only the reduction of harmful emissions, increase of thermodynamic efficiency, etc. but also the decarbonization of fuels which offers the highest potential for the reduction of CO2 emissions. Accordingly, the development of future ICEs will be closely linked to the development of CO2 neutral fuels (e.g. biofuels and e-fuels) as they will be part of a common development process. This implies an increase in development complexity, which needs the support of engine simulations. In this work, the virtual modeling of real fuel behavior is addressed to improve current simulation capabilities in studying how a specific composition can affect the engine performance.
Technical Paper

Ventilation Transport Trade Study for Future Space Suit Life Support Systems

2008-06-29
2008-01-2115
A new and advanced portable life support system (PLSS) for space suit surface exploration will require a durable, compact, and energy efficient system to transport the ventilation stream through the space suit. Current space suits used by NASA circulate the ventilation stream via a ball-bearing supported centrifugal fan. As NASA enters the design phase for the next generation PLSS, it is necessary to evaluate available technologies to determine what improvements can be made in mass, volume, power, and reliability for a ventilation transport system. Several air movement devices already designed for commercial, military, and space applications are optimized in these areas and could be adapted for EVA use. This paper summarizes the efforts to identify and compare the latest fan and bearing technologies to determine candidates for the next generation PLSS.
Technical Paper

Vehicle Study on the Impact of Diesel Fuel Sulfur Content on the Performance of DeNOX Catalysts and the Influence of DeNOX Catalysts on Particle Size and Number

2000-06-19
2000-01-1877
A vehicle investigation programme was initiated to evaluate the influence of diesel fuel sulfur content on the performance of a DeNOx catalyst for NOx control. The programme was conducted with a passive DeNOx catalyst, selected for its good NOx reduction performance and two specially prepared fuels with different sulfur contents. Regulated emissions were measured and analysed during the course of the programme. The NOx conversion efficiency of the DeNOx catalyst increased from 14 to 26% over the new European test cycle when the sulfur content of the diesel fuel was reduced from 49 to 6 wt.-ppm. In addition the number and size of particles produced using 6 wt.-ppm sulfur fuel were measured by two different techniques: mobility diameter by SMPS and aerodynamic diameter by impactor. The influence of the assumed density of the particulate on the apparent diameters measured by the two techniques is discussed.
Technical Paper

Vehicle Powertrain Simulation Accuracy for Various Drive Cycle Frequencies and Upsampling Techniques

2023-04-11
2023-01-0345
As connected and automated vehicle technologies emerge and proliferate, lower frequency vehicle trajectory data is becoming more widely available. In some cases, entire fleets are streaming position, speed, and telemetry at sample rates of less than 10 seconds. This presents opportunities to apply powertrain simulators such as the National Renewable Energy Laboratory’s Future Automotive Systems Technology Simulator to model how advanced powertrain technologies would perform in the real world. However, connected vehicle data tends to be available at lower temporal frequencies than the 1-10 Hz trajectories that have typically been used for powertrain simulation. Higher frequency data, typically used for simulation, is costly to collect and store and therefore is often limited in density and geography. This paper explores the suitability of lower frequency, high availability, connected vehicle data for detailed powertrain simulation.
Technical Paper

Vehicle Application of a 4-Cylinder Tumble DISI Engine

2001-03-05
2001-01-0735
SI engines with gasoline direct injection are currently the focus of development for almost all car manufacturers. After the introduction of DISI engines, first to the Japanese market and after a short time delay also in Europe, a broad variety of technical solutions for efficient stratified concepts can be stated. The targets of the development activities in this field are defined by legislation and customer's demands. The potential reduction of fuel consumption with stratified operation has to be combined with a further improvement of the full load potential of the DISI engine. A substantial part of the development activities are the fulfillment of current and future emission standards. Therefore, in order to realize a highly efficient lean operation, new technologies and strategies in the field of exhaust gas aftertreatment and vehicle application are required.
Technical Paper

Variable Compression Ratio - A Design Solution for Fuel Economy Concepts

2002-03-04
2002-01-1103
The challenge to reduce fuel consumption in S.I. engines is leading to the application of new series production technologies: including direct injection and, recently, the variable valve train, both aiming at unthrottled engine operation. In addition to these technologies, turbo- or mechanical supercharging is of increasing interest because, in principle, it offers a significant potential for improved fuel economy. However, a fixed compression ratio normally leads to a compromise, in that the charged engine is more of a performance enhancement than an improver of fuel economy. Fuel efficient downsizing concepts can be realized through the application of variable compression ratio. In this paper, a variable compression ratio design solution featuring eccentric movement of the crankshaft is described. Special attention is given to the integration of this solution into the base engine.
Technical Paper

Vapor/Liquid Visualization with Laser-Induced Exciplex Fluorescence in an SI-Engine for Different Fuel Injection Timings

1996-05-01
961122
Laser-induced exciplex fluorescence has been applied to the mixture formation process in the combustion chamber of an optically-accessible four-cylinder in-line spark-ignition engine in order to distinguish between liquid and vapor fuel distribution during the intake and compression stroke for different injection timings. The naphthalene/N,N,N′N′-tetramethyl p-phenylene diamine (TMPD) exciplex system excited at 308nm with a broadband XeCl excimer laser is used to obtain spectrally-separated, single-shot fluorescence images of the liquid or vapor phase of the fuel. For different timings of the fuel injector this technique is applied to obtain crank-angle-resolved images of the resulting mixture in the combustion chamber. The fluorescence light is detected with an intensified slow-scan CCD-camera equipped with appropriate filters.
Technical Paper

Upgrade Design of the Yuchai F-6113 HD-DI Diesel Engine

2004-03-08
2004-01-1317
The Yuchai F-6113 is an inline 6-cylinder heavy duty Diesel engine, mainly for truck application with a displacement of 8.4 liters and a rated power of 258 kW. It was derived from the F-6108 with a displacement of 7.3 liters. The boundary conditions for the new crankcase were set by the existing machining line. Substantially increasing the bore diameter while keeping the bore pitch constant, was achieved by replacing the conventional top stop liner with a mid stop liner with open deck. This liner concept is rather unique for heavy duty truck engines. The two 2-valve cylinder heads, covering 3 cylinders each, were replaced by a 4-valve one-piece cylinder head. The design comprises an electronically controlled Unit Pump Injection System (UPS) with the alternative to use an inline injection pump. The engine structure was laid out for the high specific output and the peak cylinder pressure requirements for the compliance with Euro III emission legislation.
Technical Paper

Ultralight Fabric Reflux Tube (UFRT) Thermal/Vacuum Test

1996-07-01
961455
Spacecraft thermal control systems are essential to provide the necessary thermal environment for the crew and to ensure that the equipment functions adequately on space missions. The Ultralight Fabric Reflux Tube (UFRT) was developed by the Pacific Northwest National Laboratory as a lightweight radiator concept to be used on planetary surface-type missions (e.g., Moon, Mars). The UFRT consists of a thin-walled tube (acting as the fluid boundary), overwrapped with a low-mass ceramic fabric (acting as the primary pressure boundary). The tubes are placed in an array in the vertical position with the evaporators at the lower end. Heat is added to the evaporators, which vaporizes the working fluid. The vapor travels to the condenser end section and condenses on the inner wall of the thin-walled tube. The resulting latent heat is radiated to the environment. The fluid condensed on the tube wall is then returned to the evaporator by gravity.
Technical Paper

US 2010 Emissions Capable Camless Heavy-Duty On-Highway Natural Gas Engine

2007-07-23
2007-01-1930
The goal of this project was to demonstrate a low emissions, high efficiency heavy-duty on-highway natural gas engine. The emissions targets for this project are to demonstrate US 2010 emissions standards on the 13-mode steady state test. To meet this goal, a chemically correct combustion (stoichiometric) natural gas engine with exhaust gas recirculation (EGR) and a three way catalyst (TWC) was developed. In addition, a Sturman Industries, Inc. camless Hydraulic Valve Actuation (HVA) system was used to improve efficiency. A Volvo 11 liter diesel engine was converted to operate as a stoichiometric natural gas engine. Operating a natural gas engine with stoichiometric combustion allows for the effective use of a TWC, which can simultaneously oxidize hydrocarbons and carbon monoxide and reduce NOx. High conversion efficiencies are possible through proper control of air-fuel ratio.
Technical Paper

Two Phase vs. Single Phase Thermal Loop Trades for Exploration Mission LAT II Architecture

2008-06-29
2008-01-1958
NASA's Exploration Mission program is planning for a return to the Moon in 2020. The Exploration Systems Mission Directorate (ESMD)'s Lunar Architecture Team (LAT) is currently refining their lunar habitat architectures. The Advanced Thermal Control Project at the Johnson Space Center, as part of the Exploration Technology Development Program (ETDP) is developing technologies in support of the future lunar missions. In support of this project, a trade study was conducted at the Jet Propulsion Laboratory on the mechanically pumped two-phase and single-phase thermal loops for lunar habitats located at the South Pole for the LAT II architecture. This paper discusses the various trades and the results for a representative architecture which shares a common external loop for the single and two-phase system cases.
Technical Paper

Turbocharging of Downsized Gasoline DI Engines with 2 and 3 Cylinders

2011-09-11
2011-24-0138
Turbocharged DISI engines with four cylinders have established in the market and provide a performance comparable to larger six-cylinder engines in the smaller compartment of a four-cylinder engine. In the Japanese market, also turbo gasoline engines with 500 - 660 cm₃ displacement have a long tradition in Kei-Cars. However, those engines show a lower specific performance as would be required for propelling typical small or compact vehicles in Europe. Recently, two-cylinder turbo engines have come to market, which are found attractive with respect to sound, package, and also enable low vehicle fuel consumption in NEDC test. The paper presents a turbocharger layout study on 2- and 3-cylinder engines. It discusses the influence of cylinder displacement volume on the sizing of turbines and compressors, and how specific flow phenomena in the turbine can be captured in the simulation model.
Technical Paper

Total Thermal Management of Battery Electric Vehicles (BEVs)

2018-05-30
2018-37-0026
The key hurdles to achieving wide consumer acceptance of battery electric vehicles (BEVs) are weather-dependent drive range, higher cost, and limited battery life. These translate into a strong need to reduce a significant energy drain and resulting drive range loss due to auxiliary electrical loads the predominant of which is the cabin thermal management load. Studies have shown that thermal sub-system loads can reduce the drive range by as much as 45% under ambient temperatures below −10 °C. Often, cabin heating relies purely on positive temperature coefficient (PTC) resistive heating, contributing to a significant range loss. Reducing this range loss may improve consumer acceptance of BEVs. The authors present a unified thermal management system (UTEMPRA) that satisfies diverse thermal and design needs of the auxiliary loads in BEVs.
Journal Article

Tomorrows Diesel Fuel Diversity - Challenges and Solutions

2008-06-23
2008-01-1731
Regulated emissions, CO2-values, comfort, good driveability, high reliability and costs, this is the main frame for all future powertrain developments. In this frame, the diesel powertrain, not only for passenger cars, but also for commercial vehicle applications, faces some challenges in order to fulfil the future European and current US emission legislations while keeping the fuel consumption benefit, good driveability and an acceptable cost frame. One of these challenges is the varying fuel qualities of diesel fuel in different countries including different cetane number, volatility, sulphur content and different molecular composition. In addition to that in the future, more and more alternative fuels with various fuel qualities and properties will be launched into the market for economical and environmental reasons. At present, the control algorithms of the injection system applied in most diesel engines is open loop control.
Technical Paper

Time-Resolved Analysis of Soot Formation and Oxidation in a Direct-Injection Diesel Engine for Different EGR-Rates by an Extinction Method

1995-10-01
952517
The formation of soot during the first phase and the oxidation of soot during the later phase of the combustion in a direct-injection diesel engine have been investigated in detail by an extinction method. The experiments were performed in a 1.9 l near-production high-speed four-cylinder in-line direct-injection diesel engine for passenger cars for different rates of exhaust gas recirculation (EGR) and for different fuels. The measurements result in crank angle resolved and cycle-averaged soot mass concentrations in the piston bowl and the combustion chamber. The results show that with increasing EGR-rates the amount of soot formed is increased only slightly but the amount of soot oxidized during combustion decreases significantly. This is assumed to be the main reason for the increase of soot in the exhaust gas with increasing EGR-rates.
X