Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Weight and Friction Optimized Cranktrain Design Supported by Coupled CAE Tools

2009-04-20
2009-01-1452
Due to the contradiction of the market demands and legal issues OEMs are forced to invest in finding concepts that assure high fuel economy, low exhaust emissions and high specific power at the same time. Since mechanical losses may amount up to 10 % of the fuel energy, a key to realise such customer/government specific demands is the improvement of the mechanical performance of the engines, which comprises mainly friction decrease and lightweight design of the engine parts. In order to achieve the mentioned objectives, it has to be checked carefully for each component whether the design potentials are utilized. Many experimental studies show that there is still room for optimization of the cranktrain parts, especially for the crankshaft. A total exploitation of the crankshaft potentials is only possible with advanced calculation approaches that ensure the component layout within design limits.
Technical Paper

Vehicle Speed Prediction for Driver Assistance Systems

2004-03-08
2004-01-0170
A predictive automatic gear shift system is currently under development. The system optimizes the gear shift process, taking the conditions of the road ahead into account, such that the fuel consumption is minimized. An essential part of the system is a module that predicts the vehicle speed dynamics: This calculates a speed trajectory, i.e. the most probable vehicle speed the driver will desire for the upcoming section of the route. In the paper the theoretical background for predicting the vehicle speed, and simulation results of the predictive shift algorithm are presented.
Technical Paper

Vehicle Exhaust Emissions Simulator- A Quality Control Tool to evaluate the Performance of Low Level Emission Sampling and Analytical Systems

2003-03-03
2003-01-0391
As the standards for exhaust emissions have become more stringent, the quality control tools used to evaluate the performance of low level samplers and analyzers has become more important. The Vehicle Exhaust Emissions Simulator (VEES) was developed to evaluate the performance of vehicle or engine exhaust emissions sampling and analytical systems. The simulator emulates emissions from low-emitting gasoline vehicles by producing a simulated exhaust stream containing emission constituents (HC, CO, CO2, and NOx) injected via Mass Flow Controllers (MFCs). This paper discusses various applications of the VEES as a quality control tool for ULEV and SULEV testing. A comparison is made between the injected amount of exhaust species by the VEES and the amounts recovered by the different sampling systems. Different root cause scenarios are discussed as to the source of discrepancies between the results on the CVS and BMD for different driving cycles.
Technical Paper

Using a Vehicle Exhaust Emission Simulator (VEES) as a Cross Check Tool for Emission Test Cell Correlation

2005-04-11
2005-01-0687
It is becoming increasingly difficult to obtain good repeatability from running lab vehicle correlation testing, since vehicle variability is so significant at the Low ULEV and SULEV emissions levels. These new emission standards are becoming so stringent that it makes it very difficult to distinguish whether a problem is a result of vehicle variability, test cell sampling or the analytical system. A vehicle exhaust emission simulator (VEES) developed by Horiba, can simulate emissions from low emitting gasoline vehicles by producing tailpipe flow rates containing emissions constituents ( HC, CH4, CO, NOx, CO2 ) injected at the tailpipe flow stream via mass flow controllers.
Technical Paper

Using Neural Networks to Compensate Altitude Effects on the Air Flow Rate in Variable Valve Timing Engines

2005-04-11
2005-01-0066
An accurate air flow rate model is critical for high-quality air-fuel ratio control in Spark-Ignition engines using a Three-Way-Catalyst. Emerging Variable Valve Timing technology complicates cylinder air charge estimation by increasing the number of independent variables. In our previous study (SAE 2004-01-3054), an Artificial Neural Network (ANN) has been used successfully to represent the air flow rate as a function of four independent variables: intake camshaft position, exhaust camshaft position, engine speed and intake manifold pressure. However, in more general terms the air flow rate also depends on ambient temperature and pressure, the latter being largely a function of altitude. With arbitrary cam phasing combinations, the ambient pressure effects in particular can be very complex. In this study, we propose using a separate neural network to compensate the effects of altitude on the air flow rate.
Technical Paper

The New “7G-TRONIC” of Mercedes-Benz: Innovative Transmission Technology for Better Driving Performance, Comfort and Fuel Economy

2004-03-08
2004-01-0649
In September 2003, the Mercedes Car Group set another milestone by introducing the fifth generation of automatic transmissions developed and manufactured in-house since 1960. The world's first 7-speed automatic transmission 7G-TRONIC is featured in the Mercedes-Benz S, SL, CL and E-Classes with V8 gasoline engines. Deduced from the demands of the requirement specifications, the 5-speed automatic transmission was decisively improved; the result is a clear increase in spontaneity, agility, fuel economy, and driving comfort for the customer. And because of the harmony between the vehicle and its powertrain, excellent results in the areas of performance, reduced emissions, comfort, and acoustics are obtained.
Technical Paper

The Measurement and Control of Cyclic Variations of Flow in a Piston Cylinder Assembly

2003-03-03
2003-01-1357
The existence of the cyclic variation of the flow inside an cylinder affects the performance of the engine. Developing methods to understand and control in-cylinder flow has been a goal of engine designers for nearly 100 years. In this paper, passive control of the intake flow of a 3.5-liter DaimlerChrysler engine was examined using a unique optical diagnostic technique: Molecular Tagging Velocimetry (MTV), which has been developed at Michigan State University. Probability density functions (PDFs) of the normalized circulation are calculated from instantaneous planar velocity measurements to quantify gas motion within a cylinder. Emphasis of this work is examination of methods that quantify the cyclic variability of the flow. In addition, the turbulent kinetic energy (TKE) of the flow on the tumble and swirl plane is calculated and compared to the PDF circulation results.
Technical Paper

Strategies to Improve SI-Engine Performance by Means of Variable Intake Lift, Timing and Duration

1992-02-01
920449
This paper reports the results of theoretical and experimental investigations in the field of variable intake - valve control of spark-ignition engines. Different degrees of freedom for a variable intake profile such as variable intake opening and closing events, variable valve lift, as well as the deactivation of one of the intake valves per cylinder of a multi-valve engine are considered and evaluated concerning their potential to reduce pumping losses, to support mixture formation, and to improve combustion. The investigations show that additional efforts are necessary to convert the potential of minimized pumping losses due to unthrottled SI-engine load control into reduced fuel consumption and good driveability. Increased gas velocities during intake for low engine speed and load and adjusted residual-gas fractions according to the different operating conditions prove to be very efficient parameters to improve engine performance under unthrottled conditions.
Technical Paper

Specifying Steel Properties and Incorporating Forming Effects in Full Vehicle Impact Simulation

2002-03-04
2002-01-0639
Mechanical properties of as-rolled steels used in a vehicle vary with many parameters including gages, steel suppliers and manufacturing processes. The residual forming and strain rate effects of automotive components have been generally neglected in full vehicle crashworthiness analyses. Not having the above information has been considered as one of the reasons for the discrepancy between the results from computer simulation models and actual vehicle tests. The objective of this study is to choose the right material property for as-rolled steels for stamping and crash computer simulation, and investigate the effect of forming and strain rate on the results of full vehicle impact analyses. Major Body-in-White components which were in the crash load paths and whose material property would change in the forming process were selected in this study. The post-formed thickness and yield stress distributions on the components were estimated using One Step forming analyses.
Technical Paper

Simulation of the Piston and Piston Ring Dynamic

2001-10-01
2001-01-3368
All reciprocating engines from the first Diesel engine to turbocharged formula 1 engines require a sealing of the combustion chamber. This sealing is realized by the compression rings. Today a set of two compression rings and one oil control ring is standard, the large variety of available solution demonstrate the continuous effort and attention paid to an optimized system performance since the first engine was started. The complexity of the interactions with the mechanical, thermal, thermodynamic, tribologic, dynamic behavior of the piston still requires mechanical testing of the various components before release to series production. This procedure can be shortened by use of simulation models reflecting the real behavior in detail to select the most promising combinations of components and characteristics.
Technical Paper

Sensitivity Analysis of Powertrain Cooling System Performance

2007-04-16
2007-01-0598
This paper identifies the difference in powertrain cooling system content levels using a nominal and a +3 Standard deviation maximum temperature design approach. Variation simulation analysis tools are used along with a 1-D cooling system performance model to predict resulting temperature distribution for different combinations of input variable populations. The analysis will show differential in powertrain cooling system content, mass, and impact to fuel economy for a nominal vs. +3 sigma design approach.
Technical Paper

Primary Noise Reduction Measures on IDI Diesel Engines

1993-05-01
931309
The IDI diesel engine still offers a substantial development potential. One major advantage is its low fuel consumption and, hence, its low CO2 emission compared to gasoline engines. The disadvantage of its higher noise emission, however, requires particular attention in the development stage. By means of modern signal analysing and signal processing methods in combination with computer simulation methods new tools for the development of low noise Diesel engines are available. The noise emission of IDI diesel engines has on average been reduced by about 5 to 8 dBA within the last 15 years. This trend will continue further despite the introduction of more and more light weight design components. Today's IDI diesel engine is mainly dominated by high noise levels in the frequency range about 1600 to 2000 Hz. In-depth measurements show that this is generally caused by a high combustion excitation (Helmholtz-resonance) and, in addition, structure weaknesses of the crankcase.
Technical Paper

Prediction of Combustion Process Induced Vehicle Interior Noise

2003-05-05
2003-01-1435
At the present time, combustion process effects on vehicle interior noise can be evaluated only when vehicle and engine are physically available. This Paper deals with a new method for the prediction of combustion process induced vehicle interior noise. The method can be applied already in early combustion system development and allows a time and cost efficient calibration optimization of engine and vehicle. After establishing appropriate transfer weighting functions (engine) and structure transfer functions (vehicle), audible vehicle interior noise is generated based on appropriate cylinder pressure analysis. Combustion process effects on interior noise can be judged subjectively as well as objectively. Thus, combustion process development at the thermodynamic test bench is effectively supported to achieve an optimal compromise with respect to fuel consumption, exhaust emission and interior noise quality.
Technical Paper

Powertrain Mounting Design Principles to Achieve Optimum Vibration Isolation with Demonstration Tools

2003-05-05
2003-01-1476
The way a powertrain is mounted plays an important role in improving vehicle noise and vibration caused by the engine firing forces and can be an effective role in improving vehicle ride comfort. This paper describes the basic concepts in powertrain mounting and derives a new concept of evaluating powertrain mounting. It is well known in publications that a decoupled powertrain mounting system has better NVH characteristics[3][4][6]. But how to relate percentage of decouple to powertrain mounts transmitted forces, what “decoupled” really means, and how to evaluate how much it is decoupled are still ambiguous to many engineers. The traditional “one coordinate system” kinetic energy fraction (KEF) index can't give a clear picture of how much the engine mounting is decoupled and is often misleading. The new concept focuses on the excitations acting on the powertrain system.
Technical Paper

Plain Bearings in High Performance Engines - Simulation Tools for Advanced Investigations and Layouts

2006-04-03
2006-01-1102
The loads on the plain bearings of modern combustion engines increase continuously. Reasons for this development are increasing engine speeds on gasoline engines, growing cylinder peak pressures at diesel engines and both combined with the steady trend toward light weight concepts. The still significantly increasing power output of modern engines has to be combined with actions reducing the engine friction losses, as for example smaller bearing dimensions or lower engine oil viscosities. At the same time the comfort, lifetime and engine service interval targets are aggravating boundary conditions. This development leads to the point, where former approaches toward plain bearing layout reach their systematic limitations - a first indication are bearing failures, which occur even though all conventional layout criteria's are fulfilled. Further effects need to be considered to simulate the behavior of the plain bearing under the boundary conditions of a fired combustion engine.
Technical Paper

Performance, Fuel Economy, and Emissions Optimization for a 2.2L Multipoint Fuel Injection Gasoline Engine

2002-10-21
2002-01-2845
Future boundary conditions for vehicle engine development will be very complex since they are “functions” of parameters that are difficult to predict: increasingly stringent legislation, changing consumer demand, and availability of resources. The main development goals for passenger cars today are the enhancement of performance and reduction of fuel consumption and cost while facing future emission standards. In China for example, drastic changes in emission regulation have forced the automotive industry to speed up the development processes and shorten the product life cycles. In this respect, the Mianyang Xinchen Engine Co. Ltd, part of Brilliance Group, Mianyang China and FEV Motorentechnik, Aachen Germany conducted a joint project to study Mianyang's 2.2L, 2-valve, multipoint fuel injection (MPI) gasoline engine.
Technical Paper

Performance Improvement and Emission Reduction of NGV BiFuel Engines for Passenger Cars

2004-11-16
2004-01-3468
Reduced resources of mineral oil and growing world energy consumption will increase the demand for alternative energies. Natural gas is gaining interest due to the worldwide ratio of assured reserves of natural gas and crude oil shifting towards natural gas. The main motivation for the use of gas are oil substitution, source diversification and independency of fuel supply as well as the reduction of greenhouse gases especially CO2. Natural gas operation usually reduces the torque of a naturally aspirated engine due to fuel properties. The paper shows that an optimization of a naturally aspirated engine layout can reduce the loss significantly. Besides compression ratio optimization also intake manifold and camshaft redesign for natural gas specific application can reduce the torque loss to a minimum. Super charging or turbo charging of spark ignition engines can effectively overcome the torque loss.
Technical Paper

PIFFO - Piston Friction Force Measurements During Engine Operation

1996-02-01
960306
Fuel consumption of a modern combustion engine is significantly influenced by the mechanical friction losses. Particularly in typical city driving, the reduction of the engine friction losses offers a remarkable potential in emission and fuel consumption reduction. The analysis of the engine friction distribution of modern engines shows that the piston group has a high share at total engine friction. This offers a high potential to optimize piston group friction. The paper presents results of recent research and development work in the field of the tribological system piston/piston ring/cylinder bore.
Technical Paper

NVH Refinement of Diesel Powered Sedans with Special Emphasis on Diesel Clatter Noise and Powertrain Harshness

2007-05-15
2007-01-2378
NVH refinement of passenger vehicles is crucial to customer acceptance of contemporary vehicles. This paper describes the vehicle NVH development process, with specific examples from a Diesel sedan application that was derived from gasoline engine-based vehicle architecture. Using an early prototype Diesel vehicle as a starting point, this paper examines the application of a Vehicle Interior Noise Simulation (VINS) technique in the development process. Accordingly, structureborne and airborne noise shares are analyzed in the time-domain under both steady-state and transient test conditions. The results are used to drive countermeasure development to address structureborne and airborne noise refinement. Examples are provided to highlight the refinement process for “Diesel knocking” under idle as well as transient test conditions. Specifically, the application of VINS to understanding the influence of high frequency dynamic stiffness of hydro-mounts on Diesel clatter noise is examined.
Technical Paper

NVH Optimization of an In-Line 4-Cylinder Powertrain

1995-05-01
951294
The NVH optimization is a key issue for the development of future powertrains. This includes the radiated noise in terms of noise level and sound quality as well as the structure-borne noise excitation via the engine mounts. Experience shows that there are generally no single noise relevant components on modern powertrains which dominate the NVH behaviour. In contrast, a good NVH performance can only be achieved if the optimization process includes every single component and excitation. Only the combination of these optimized designs can lead to a first-class powertrain NVH. Within this paper the NVH optimization process of an existing 4-cylinder in-line spark-ignition powertrain is described. Examples for positive NVH designs are presented and their effect on the NVH behaviour are explained. Combining all positive NVH features into the engine resulted in a noise reduction of 3-5 dBA without any negative effect on fuel economy and performance.
X