Refine Your Search

Topic

Author

Search Results

Technical Paper

Using the Six Sigma Methodology for Process Variation Reduction

2007-11-28
2007-01-2872
This paper is about the use of the Six Sigma Methodology, to solve variation problems in the manufacture area, at one of the Delphi Automotive Systems unit that manufacturer electrical harness. The DMAIC framework was followed, the improvements were done, eliminating the rots causes, and the use of Six Sigma methodology, was showed very efficient in solve problems. The methodology power, is in using a structured frame work, the DMAIC (Define-Measure-Analyze-Improve-Control), completing by quality quality tools (Pareto Chart, Five Why's, Cause and Effect Diagram) and statistical analyses, for example: variance analyses, hypotheses tests and Design of Experiments.
Technical Paper

USE OF CFD SIMULATION TO PREDICT CAVITATION IN AUTOMOTIVE HEATER CORES

2005-11-22
2005-01-4027
Several heater cores failed due to erosion by cavitation. After analysis, most of failures were explained by the presence of impurities in the heater core. It was then decided with the customer to use CFD simulation in order to prove that the cavitation was not caused by design concept of the tank. In this paper, we present the results of heater core simulations done in 2D and in 3D with Fluent. The objective is to simulate the pressure and velocity distribution within the heater core and to verify if the zones of low pressure are below the saturation vapour pressure of the fluid causing cavitation. In these areas, the deterioration of the tubes might occur due to erosion by cavitation.
Technical Paper

US and UK Field Rollover Characteristics

2001-03-05
2001-01-0167
In this study, US and UK accident data were analyzed to identify parameters that may influence rollover propensity to analyze driver injury rate. The US data was obtained from the weighted National Automotive Sampling System (NASS-CDS), calendar years 1992 to 1996. The UK pre-roll data was obtained from the national STATS 19 database for 1996, while the injury information was collected from the Co-operative Crash Injury Study (CCIS) database. In the US and UK databases, rollovers accounted for about 10% of all crashes with known crash directions. In the US and UK databases, most rollovers occurred when the vehicle was either going straight ahead or turning. The propensity for a rollover was more than 3 times higher when going around a bend than a non-rollover. In the UK, 74% of rollovers occurred on clear days with no high winds and 14% on rainy days with no high winds. In the US, 83% of rollovers took place in non-adverse weather conditions and 10% with rain.
Technical Paper

The Solution for Steady State Temperature Distribution in Monolithic Catalytic Converters

2001-03-05
2001-01-0941
This paper presents a simplified thermal model for round catalytic converters in steady state operation. Using this model, the analytic solution for the temperature distribution in the monolithic substrate is obtained. This analytic solution in the substrate is, then, combined with those in the intumescent mat [1] and the metal shell to obtain the temperature profile in the radial direction of the converter except for three unknown temperatures at the three material interfaces, which can be solved using an Excel application program. This analytical temperature solution facilitates the studies of the effects of various design parameters such as the exhaust gas temperature, exhaust gas flow rate, substrate cell geometry, converter dimensions, and ambient temperature and flow, etc.
Technical Paper

Single Crystal Silicon Low-g Acceleration Sensor

2002-03-04
2002-01-1080
A single-crystal silicon capacitive acceleration sensor for low-g applications has been developed. The sensor element itself is formed entirely from single crystal silicon, giving it exceptional stability over time and temperature and excellent shock resistance. The sensor is produced using low-cost, high volume processing, test and calibration. The sensor integrated circuit (IC) contains a proofmass which moves in response to applied accelerations. The position of the proofmass is capacitively detected and processed by an interface IC. The sensor/interface IC system is packaged in a small outline IC (SOIC) package for printed circuit board mounting. The module is designed to measure full scale accelerations in the 0.75g to 3g range to suit a variety of automotive, industrial and consumer applications
Technical Paper

Open-Interface Definitions for Automotive Systems1 Application to a Brake by Wire System

2002-03-04
2002-01-0267
Today automotive system suppliers develop more-or-less independent systems, such as brake, power steering and suspension systems. In the future, car manufacturers like Volvo will build up vehicle control systems combining their own algorithms with algorithms provided by automotive system suppliers. Standardization of interfaces to actuators, sensors and functions is an important enabler for this vision and will have major consequences for functionality, prices and lead times, and thus affects both vehicle manufacturers and automotive suppliers. The investigation of the level of appropriate interfaces, as part of the European BRAKE project, is described here. Potential problems and consequences are discussed from both a technical and a business perspective. This paper provides a background on BRAKE and on the functional decomposition upon which the interface definitions are based. Finally, the interface definitions for brake system functionality are given.
Technical Paper

Multiple Environment Accelerated Reliability Test Development

1999-10-10
1999-01-3387
The four major discriminators for products in the market place are Technology, Quality,1 Cost and Delivery. Effective measurement systems and initial design quality have the largest impact on delivered field quality, program development cost and timing, as well as customer enthusiasm. System-level reliability testing methods have a major impact on the business health of any product. The implementation of laboratory forced failure testing in simultaneously applied energy environments has the largest influence for "designing in" field reliability and lowering development cost. Clearly a policy change from success based testing to forced failure testing has had the largest impact on results for the consumer.
Technical Paper

Multi-Sensor Modules with Data Bus Communication Capability

1999-03-01
1999-01-1277
Automotive multi-sensor modules, capable of vehicle-wide communications via a data bus will be discussed. Proper sensor grouping, packaging and device placement are key issues in the implementation of smart sensor modules. Sensors that are candidates for clustering include temperature, acceleration, angular rate, barometric pressure, chemical, and light sensors. The capability to accommodate a variety of data bus communication protocols is required to satisfy the majority of automotive systems. System integration must be considered when employing a smart sensor network through-out an automobile in a cost effective manner. This paper will cover the module issues associated with sensing, packaging, electronics, communication and system integration.
Technical Paper

Modal Participation Analysis for Identifying Brake Squeal Mechanism

2000-10-01
2000-01-2764
Brake squeal phenomenon often involves modal coupling between various component modes. In order to reduce or eliminate squeal, it is very important to understand the coupling mechanism so that the key component(s) can be modified accordingly. This paper demonstrates a quantitative method to define system mode shapes using the concept of modal participation factors. This method is implemented on a front disc brake system to identify the modal coupling mechanism associated with its high frequency squeal. Complex eigenvalue analysis is carried out and the squeal frequency is correlated. System mode shapes are then processed with an in-house program to calculate modal participation factors based on a complex MAC (Modal Assurance Criteria) algorithm. The coupling mechanism is identified and possible countermeasures are discussed.
Technical Paper

Isolating Hydraulic Noise from Mechanical Noise in Power Rack & Pinion Steering Systems

1999-03-01
1999-01-0397
The purpose of this report is to quantify the methodology for evaluating and isolating rattle noises in power rack & pinion steering systems. In today's ever changing market of vehicle body & suspension changes, it's very important that the correct process be used to identify the correct noise source. The results of this evaluation procedure will help sort out the difference between hydraulic generated noises and mechanical generated noises. The process used in sorting the hydraulic noise from the mechanical noise is through the use of a “standpipe”, which dampens the hydraulic reaction pulse in the hydraulic steering system. We refer to this hydraulic pulse as “hydraulic rattle”, and is often confused with mechanical rattle during vehicle evaluations. The concept of the standpipe is similar to that used in household plumbing, which reduces the effects of hydraulic hammering in the water pipes.
Technical Paper

Individual Cylinder Fuel Control with a Switching Oxygen Sensor

1999-03-01
1999-01-0546
In this paper we discuss in detail an algorithm that addresses cylinder-to-cylinder imbalance issues. Maintaining even equivalence-ratio (ϕ) control across all the cylinders of an engine is confounded by imbalances which include fuel-injector flow variations, fresh-air intake maldistribution and uneven distribution of Exhaust Gas Re-circulation (EGR). Moreover, in markets that are growing increasingly cost conscious, with ever tightening emissions regulations, correcting for such mismatches must not only be done, but done at little or no additional cost. To address this challenge, we developed an Individual Cylinder Fuel Control (ICFC) algorithm that estimates each cylinder's individual ϕ and then compensates to correct for any imbalance using only existing production hardware. Prior work in this area exists1,2, yet all disclosed production-intent work was performed using wide-range oxygen sensors, representing cost increases.
Technical Paper

Implications of 3-D Internal Flow Simulation on the Design of Inward-Opening Pressure-Swirl Injectors

2002-10-21
2002-01-2698
A parametric study on the effects of critical injector design parameters of inwardly-opening pressure-swirl injectors was carried out using 3-D internal flow simulations. The pressure variation and the integrated momentum flux across the injector, as well as the flow distributions and turbulence structure at the nozzle exit were analyzed. The critical flow effects on the injector design identified are the swirler efficiency, discharge coefficient, and turbulence breakup effects on the spray structure. The study shows that as a unique class of injectors, pressure-swirl injectors is complicated in fluid mechanics and not sufficiently characterized or optimized. The swirler efficiency is characterized in terms of the trade-off relationship between the swirl-to-axial momentum-flux ratio and pressure drop across the swirler. The results show that swirl number is inversely proportional to discharge coefficient, and that hole diameter and swirler height is the most dominant parameters.
Technical Paper

Implementation of Lead-Free Solder for Automotive Electronics

2000-03-06
2000-01-0017
Lead-free solders for electronics have been actively pursued since the early 1990's here and abroad for environmental, legislative, and competitive reasons. The National Center for Manufacturing Sciences (NCMS-US)1, the International Tin Research Institute (ITRI-UK)2, Swedish Institute of Production Engineering Research (IVF-Sweden)3, Japan Institute of Electronics Packaging (JIEP Japan)4, Improved Design Life and Environmentally Aware Manufacture of Electronics Assemblies by Lead-free Soldering (IDEALS-Europe)5, and, more recently, the National Electronics Manufacturing Initiative (NEMI-US)6 have been aggressively seeking lead-free solutions The automotive industry has some unique requirements that demand extensive testing of new materials and processes prior to implementation. The specific steps taken at Delphi Automotive Systems with lead-free solder will be described along with the lessons learned along the way.
Technical Paper

Identification and Elimination of Steering Systems Squawk Noise

1997-05-20
972058
The problem being investigated involves a noise-quality issue on a power steering application, when a sudden change of steering wheel angle generates an unwanted steering system noise or “Squawk.” This phenomenon is mostly observed during parking maneuvers, especially at lock positions and when the hydraulic fluid reaches a critical temperature on the specific application. The objective of the work to solve this noise-quality issue was to first identify the cause and then eliminate the Squawk noise. There were several constraints: No change could be made in the properties or type of hydraulic fluid used due to specification requirements; Steering wheel valve torsion bar characteristic (torque vs. angle) needed to be maintained within specification for ride and handling purposes; and, In addition to the mentioned constraints, a high capability of noise elimination generated by the production tolerances and dispersion has been considered.
Technical Paper

High Frequency Effects on Localization and Sound Perception in a Small Acoustic Space

2002-03-04
2002-01-0117
As compared to home audio, the automobile has a different spatial and spectral distribution of sound. This can cause stereo images to blur or shift due to conflicting localization cues. The impact of interaural time and level differences is discussed, along with frequency-selective pinna and head cues. Review of the literature shows that our poorest localization is for mid frequencies (∼2kHz). Yet in an automobile, low frequencies are severely relocated with a minimum effect on fidelity. It is suggested this is because middle frequencies dominate the perception and localization of sound. Therefore, some high frequency information might also be relocated.
Technical Paper

Globalization of the Design for Manufacturability/Assembly Process within the Automotive Wiring Assembly Business

1999-03-01
1999-01-0052
Automotive wiring assembly design and manufacturing has evolved from a locally based business to a global business. It is common today to engineer the design of a wiring assembly in one region of the world, to manufacture it in a second region, and to assemble it into the vehicle in a third region. This creates a need for global collaboration, training and communications. Design for Manufacturability (DFM) is a tool that can aid in this, in developing common processes globally, and reducing the cost and design complexity of the product in the early design stages. To develop a global DFM process, an organization must develop and implement a strategy. This paper will review the approach that an automotive wiring assembly supplier adopted. It will enumerate the benefits of developing a global Design for Manufacturability process, selecting a champion, and using a twelve-step plan to integrate DFM into each region.
Technical Paper

Engine Control Using Torque Estimation

2001-03-05
2001-01-0995
In recent years, the increasing interest and requirements for improved engine diagnostics and control has led to the implementation of several different sensing and signal processing technologies. In order to optimize the performance and emission of an engine, detailed and specified knowledge of the combustion process inside the engine cylinder is required. In that sense, the torque generated by each combustion event in an IC engine is one of the most important variables related to the combustion process and engine performance. This paper introduces torque estimation techniques in the real-time basis for engine control applications using the measurement of crankshaft speed variation. The torque estimation scheme presented in this paper consists of two entirely different approaches, “Stochastic Analysis” and “Frequency Analysis”.
Technical Paper

Diagnostic Strategies for Advanced Automotive Systems

2002-10-21
2002-21-0024
In recent years, the desire for improved vehicle performance, reliability and safety have increased the electrical content and its complexity in vehicles. Advanced automotive systems integrate sensors, controllers, actuators and communication networks. To maintain safety and reliability, a comprehensive system of diagnostics and physical and analytic redundancy are used. In some cases, diagnostic strategies based on analytical redundancy can provide detection, as well as fault-tolerance, and may provide benefits in cost, packaging, flexibility and reusability. This paper discusses a range of diagnostic methods and their applicability to advanced automotive systems such as X-by-Wire. It will also show the reduction to practice of an advanced analytical technique for an automotive application.
Technical Paper

Development Experience with Steer-by-Wire

2001-08-20
2001-01-2479
Recent advances in dependable embedded system technology, as well as continuing demand for improved handling and passive and active safety improvements, have led vehicle manufacturers and suppliers to actively pursue development programs in computer-controlled, by-wire subsystems. These subsystems include steer-by-wire and brake-by-wire, and are composed of mechanically de-coupled sets of actuators and controllers connected through multiplexed, in-vehicle computer networks; there is no mechanical link to the driver. This paper addresses fundamental benefits and issues of steer-by-wire, especially those related to automated vehicle control and steering feel quality as perceived by the driver.
Technical Paper

Determining Hearing Threshold of Interior Noise Using Adaptive Procedure

2001-04-30
2001-01-1574
A jury evaluation study has been conducted to determine the hearing threshold of IP gauge stepping motor noise using a transformed up-down procedure. The stepping motor noise was recorded in an anechoic chamber and was used as a signal in the study. To determine the masked threshold, this signal was adjusted to various gain levels and mixed with interior engine noise at selected rpm as masking noise. In this study, the Adaptive Procedure was used, and a software application was developed for this purpose. Twenty subjects, selected based on hearing test results, participated in this jury evaluation. The findings of this study indicated that Adaptive Procedure is an effective approach in determining hearing threshold for automotive applications. A design criterion for acoustical characteristics of the IP gauge DC motor noise has been developed based on the results of this study.
X