Refine Your Search

Topic

Author

Search Results

Technical Paper

Zero Resistance Technology (ZRT)

2005-11-22
2005-01-4109
Delphi's Zero Resistance Technology (ZRT) is a revolutionary new product/process that enables the reduction of mass and volume from a traditional wiring assembly. ZRT is defined as a minimal (zero) resistance change over time. The ZRT product is an electrical/electronic connection system which provides a viable solution for high density and limited space wiring applications. The ZRT process is a semi-automated wiring harness manufacturing system with flexibility to produce harnesses to the customer demand.
Technical Paper

Variable Effort Steering for Vehicle Stability Enhancement Using an Electric Power Steering System

2000-03-06
2000-01-0817
This paper investigates a method for improving vehicle stability by incorporating feedback from a yaw rate sensor into an electric power steering system. Presently, vehicle stability enhancement techniques are an extension of antilock braking systems in aiding the driver during vehicle maneuvers. One of the contributors to loss of vehicle control is the reduction in tactile feedback from the steering handwheel when driving on wet or icy pavement. This paper presents research indicating that the use yaw rate feedback improves vehicle stability by increasing the amount of tactile feedback when driving under adverse road conditions.
Technical Paper

Use of Fuzzy Logic in Wheel Slip Assignment - Part II: Yaw Rate Control with Sideslip Angle Limitation

2002-03-04
2002-01-1220
This paper is an extension to the work presented in part I [1]. The control objective is still the same - use a logic based control design technique to assign a wheel slip, λ, to each corner of a vehicle, to track overall desired vehicle dynamics. As in part I, a fuzzy logic based controller is the primary control, with additional logic to select the inside/outside classifiers for the wheels. In part I, only the reduction of yaw rate error, e, was considered. It was shown that, although the overall system had satisfactory performance, there was slight deteriorization in the tracking performance when trying to compensate through a significant vehicle sideslip angle, β. In this paper, additional logic is introduced into the control to limit the vehicle sideslip angle, β; thus, allowing for a more robust desired yaw rate, Ωd, tracking control performance. The emergency lane change maneuver is simulated to show the effectiveness of the redesigned control.
Technical Paper

USE OF CFD SIMULATION TO PREDICT CAVITATION IN AUTOMOTIVE HEATER CORES

2005-11-22
2005-01-4027
Several heater cores failed due to erosion by cavitation. After analysis, most of failures were explained by the presence of impurities in the heater core. It was then decided with the customer to use CFD simulation in order to prove that the cavitation was not caused by design concept of the tank. In this paper, we present the results of heater core simulations done in 2D and in 3D with Fluent. The objective is to simulate the pressure and velocity distribution within the heater core and to verify if the zones of low pressure are below the saturation vapour pressure of the fluid causing cavitation. In these areas, the deterioration of the tubes might occur due to erosion by cavitation.
Technical Paper

Two Dimensional Modeling of a Rotary Power Steering Valve

1999-03-01
1999-01-0396
The power steering valve plays a key role in the steering performance of a vehicle. It is desirable, therefore, to have a means of predicting valve performance for the development of the steering system. This paper describes a method of applying the orifice equation to a steering valve, along with the procedure for experimentally determining the flow coefficients for this equation. Data is provided which demonstrates the nature of change of the flow coefficients through the operating range of the valve. A method for accounting for these changes is provided, along with correlation results for measured and predicted valve performance.
Technical Paper

Thermal Electric Analysis of Bond Wires Used in Automotive Electronic Modules

2015-04-14
2015-01-0195
Bond wires are used in automotive electronic modules to carry current from external harness to components where flexibility under thermal cyclic loading is very essential between PCB (Printed Circuit Board) and connectors. They are very thin wires (few μm) made up of gold, aluminum or copper and have to undergo mechanical reliability to withstand extreme mechanical and thermal loads during different vehicle operation scenarios. Thermal reliability of bond wire is to make sure that it can withstand prescribed electric current under given boundary conditions without fusing thereby retaining electronic module's functionality. While carrying current, bond wire by virtue of its nature resists electric current flow and generates heat also called as joule heating. Joule heating is proportional to current flow and electrical resistance and if not handled properly can lead to thermal run away conditions.
Technical Paper

The Solution for Steady State Temperature Distribution in Monolithic Catalytic Converters

2001-03-05
2001-01-0941
This paper presents a simplified thermal model for round catalytic converters in steady state operation. Using this model, the analytic solution for the temperature distribution in the monolithic substrate is obtained. This analytic solution in the substrate is, then, combined with those in the intumescent mat [1] and the metal shell to obtain the temperature profile in the radial direction of the converter except for three unknown temperatures at the three material interfaces, which can be solved using an Excel application program. This analytical temperature solution facilitates the studies of the effects of various design parameters such as the exhaust gas temperature, exhaust gas flow rate, substrate cell geometry, converter dimensions, and ambient temperature and flow, etc.
Technical Paper

Single Crystal Silicon Low-g Acceleration Sensor

2002-03-04
2002-01-1080
A single-crystal silicon capacitive acceleration sensor for low-g applications has been developed. The sensor element itself is formed entirely from single crystal silicon, giving it exceptional stability over time and temperature and excellent shock resistance. The sensor is produced using low-cost, high volume processing, test and calibration. The sensor integrated circuit (IC) contains a proofmass which moves in response to applied accelerations. The position of the proofmass is capacitively detected and processed by an interface IC. The sensor/interface IC system is packaged in a small outline IC (SOIC) package for printed circuit board mounting. The module is designed to measure full scale accelerations in the 0.75g to 3g range to suit a variety of automotive, industrial and consumer applications
Technical Paper

Rheocasting of Semi-Solid A357 Aluminum

2000-03-06
2000-01-0059
The most popular aluminum alloys for semi-solid automotive components are A356 and A357. The density of rheocast semi-solid A357 is higher than die cast A357 and allows for both T5 and T6 heat treatment. The mechanical properties of rheocast semi-solid A357 was found to be more dependent upon the heat treat schedule and casting soundness than by the solid content of the semi-solid slurry or the globule shape.
Technical Paper

Resistance Welding for Automotive Wiring Harness Connection - Small Gauge Cables

2012-10-02
2012-36-0153
Miniaturization is an important trend in many technology segments, once it can enable innovative applications generating new markets. This trend was begun in electronics industry after World War II and has spawned changes into automotive sector also. For Automotive Wiring Harness, miniaturization is clearly presented in most of the components, mainly because of its benefits like the potential of mass reduction, cost reduction and efficiency improvement. Furthermore the main voice of customer points to cable gauge reduction that represents a considerable challenge for connection manufacturing process due to quality control limitations presented by conventional crimp process for 0,35 [mm₂] cables and smaller. According to that, the scope of this article is to present, in details, a manufacturing process optimization for an alternative and more robust technology of joining copper stranded cables to tin brass terminals used on automotive wiring harness, Resistance Welding.
Technical Paper

Reliability of Resonant Micromachined Sensors and Actuators

2001-03-05
2001-01-0618
There are an increasing number of applications for resonant micromachines. Accelerometers, angular rate sensors, voltage controlled oscillators, pressure and chemical sensors have been demonstrated using this technology. Several of these devices are employed in vehicles. Vibrating devices have been made from silicon, quartz, GaAs, nickel and aluminum. Resonant microsystems are in constant motion and so present new challenges in the area of reliability for vehicular applications. The impact of temperature extremes, cyclic fatigue, stiction, thermal and mechanical shock on resonant device performance is covered.
Technical Paper

Powertrains of the Future: Reducing the Impact of Transportation on the Environment

1999-03-01
1999-01-0991
Tomorrow's winning powertrain solutions reside in those technology combinations providing optimized propulsion systems with zero emissions and no cost or performance penalty compared with today's vehicles. The recent Kyoto Protocol for CO2 reduction and the California Air Resources Board (CARB) thrust for zero emission vehicles along with the European Regulatory community, motivate car manufacturers to adopt new light body structures with low aerodynamic drag coefficients, low-rolling resistance and the highest efficiency powertrains. The environmental equation expresses car manufacturers aptitude and desire to create zero emission vehicles at acceptable levels of performance unlike limited range electrical powered vehicle products. The cheapest solution to the environmental equation remains the conventional internal combustion engine ($30 to $50 per kW).
Technical Paper

Optimization of Oxygen Sensor

2000-03-06
2000-01-1364
Optimization of the mechanical aspects of a heated conical oxygen sensor for desired performances, such as low heater power, good poison resistance, fast light-off, and broad temperature range, etc. was achieved with computer modeling. CFD analysis was used to model the flow field in and around a sensor in an exhaust pipe to predict the convection coefficients, poisoning, and switching time. Heat transfer analysis coupled with electrical heating was applied to predict temperature and light-off time. Results of the optimization are illustrated, with good agreements between modeling and testing.
Technical Paper

Open-Interface Definitions for Automotive Systems1 Application to a Brake by Wire System

2002-03-04
2002-01-0267
Today automotive system suppliers develop more-or-less independent systems, such as brake, power steering and suspension systems. In the future, car manufacturers like Volvo will build up vehicle control systems combining their own algorithms with algorithms provided by automotive system suppliers. Standardization of interfaces to actuators, sensors and functions is an important enabler for this vision and will have major consequences for functionality, prices and lead times, and thus affects both vehicle manufacturers and automotive suppliers. The investigation of the level of appropriate interfaces, as part of the European BRAKE project, is described here. Potential problems and consequences are discussed from both a technical and a business perspective. This paper provides a background on BRAKE and on the functional decomposition upon which the interface definitions are based. Finally, the interface definitions for brake system functionality are given.
Technical Paper

Numerical Prediction of Brake Fluid Temperature Rise During Braking and Heat Soaking

1999-03-01
1999-01-0483
Long repetitive braking, such as one which occurs during a mountain descent, will result in a brake fluid temperature rise and may cause brake fluid vaporization. This may be a concern particularly for passenger cars equipped with aluminum calipers and with a limited air flow to the wheel brake systems. This paper describes the computer modeling techniques to predict the brake fluid temperature rise as well as other brake component temperatures during braking and heat soaking. Numerical results are compared to the measured vehicle data and the effects of relevant brake system parameters on the fluid temperature are investigated. The techniques developed in this study will help brake engineers to build a safer brake system and reduce the extensive vehicle tests currently required.
Technical Paper

Non-Linear Analysis of Vehicle Dynamics (NAVDyn): A Reduced Order Model for Vehicle Handling Analysis

2000-05-01
2000-01-1621
Many vehicle-dynamics models exist to study the motion of a vehicle. Most of these models fall into one of two categories: very simple models for basic analyses and high-order models consisting of many degrees-of-freedom. For many scenarios, the simple models are not adequate. At the same time, for many vehicle handling and braking studies, the high-order models are more complex than necessary. This paper presents a model that includes the dynamics that are relevant to studying vehicle handling and braking, but is still simple enough to run in near real-time. The model was implemented in such a way that it is easily customized for a particular study. Predictions from this simplified model were compared against a high-order model and against actual vehicle test data. The simulations indicate a close agreement in the results.
Technical Paper

Laser Welding: An Exploratory Study towards Continuous Improvement on Stainless Steel Welding Joints

2009-10-06
2009-36-0330
The utilization of Laser welding process has increased during last years in several areas of industry, due to many benefits that can be achieved with this technology, such as: flexibility, productivity and quality. Thus, the optimization of Laser welding processes has been considered as a “green field” to be explored by Laser manufacturers, automation companies and process/project engineers. Nowadays there are few researches that provide a roadmap for Laser welding processes improvement that approaches both the aspects and characteristics applied to evaluate the Laser weld application performance. Therefore, this paper has per its main purpose through an exploratory study to provide parameters toward continuous improvement of Laser welding process considering both types of Lasers: Laser spot weld and Laser seam weld of stainless steel joints, thus this work may be considered as theoretical and practical reference to be applied by people involved with Laser welding applications.
Technical Paper

Instrument Panel Skin Manufactured with 100% Recycled TPO Material

2002-03-04
2002-01-1262
Desiring to push thermoplastic poly-olefin (TPO) technology to its fullest limits and to confirm our position as the leader in the manufacturing of environmentally friendly TPO instrument panels, we have designed a process to manufacture 100% recycled instrument panel skins. This closed-loop process begins with extruding 100% recycled TPO flake into sheet stock to be painted and vacuum formed. The painted sheet is vacuum formed and the offal is ground into regrind flake, ready to be extruded again, thus completing the closed-loop process. This paper will describe a 100% closed loop recycling process for TPO instrument panels, discuss the intense validation process for recycled material and prove the robustness and durability of this interior solution.
Technical Paper

Individual Cylinder Fuel Control with a Switching Oxygen Sensor

1999-03-01
1999-01-0546
In this paper we discuss in detail an algorithm that addresses cylinder-to-cylinder imbalance issues. Maintaining even equivalence-ratio (ϕ) control across all the cylinders of an engine is confounded by imbalances which include fuel-injector flow variations, fresh-air intake maldistribution and uneven distribution of Exhaust Gas Re-circulation (EGR). Moreover, in markets that are growing increasingly cost conscious, with ever tightening emissions regulations, correcting for such mismatches must not only be done, but done at little or no additional cost. To address this challenge, we developed an Individual Cylinder Fuel Control (ICFC) algorithm that estimates each cylinder's individual ϕ and then compensates to correct for any imbalance using only existing production hardware. Prior work in this area exists1,2, yet all disclosed production-intent work was performed using wide-range oxygen sensors, representing cost increases.
Technical Paper

Implications of 3-D Internal Flow Simulation on the Design of Inward-Opening Pressure-Swirl Injectors

2002-10-21
2002-01-2698
A parametric study on the effects of critical injector design parameters of inwardly-opening pressure-swirl injectors was carried out using 3-D internal flow simulations. The pressure variation and the integrated momentum flux across the injector, as well as the flow distributions and turbulence structure at the nozzle exit were analyzed. The critical flow effects on the injector design identified are the swirler efficiency, discharge coefficient, and turbulence breakup effects on the spray structure. The study shows that as a unique class of injectors, pressure-swirl injectors is complicated in fluid mechanics and not sufficiently characterized or optimized. The swirler efficiency is characterized in terms of the trade-off relationship between the swirl-to-axial momentum-flux ratio and pressure drop across the swirler. The results show that swirl number is inversely proportional to discharge coefficient, and that hole diameter and swirler height is the most dominant parameters.
X