Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

a new look at High Compression Engines

1959-01-01
590015
THE automotive and petroleum industries have been concerned for many years with the mutual problem of improving the thermal efficiency of gasoline engines. Great progress in refining technology, as well as advances in engine design in recent years, have made it desirable to take a new look at high-compression engines. This paper describes an investigation of the effect of compression ratio on engine efficiency over a range of compression ratios from 9/1 to 25/1. The results show that the thermal efficiency of the multicylinder engines used in this study peaked at a compression ratio of 17/1. The decrease in thermal efficiency at higher compression ratios is due primarily to delay in the completion of the combustion process. This paper received the 1958 Horning Memorial Award.
Technical Paper

Virtual Engine Dynamometer in Service Life Testing of Transmissions: A Comparison Between Real Engine and Electric Dynamometers as Prime Movers in Validation Test Rigs

2010-04-12
2010-01-0919
A test cell was developed for evaluating a 6-speed automatic transmission. The target vehicle had an internal combustion 5.4L gasoline V8 engine. An electric dynamometer was used to closely simulate the engine characteristics. This included generating mean torque from the ECU engine map, with a transient capability of 10,000 rpm/second. Engine inertia was simulated with a transient capability of 20,000 rpm/second, and torque pulsation was simulated individually for each piston, with a transient capability of 50,000 rpm/second. Quantitative results are presented for the correlation between the engine driven and the dynamometer driven transmission performance over more than 60 test cycles. Concerns about using the virtual engine in validation testing are discussed, and related to the high frequency transient performance required from the electric dynamometer. Qualitative differences between the fueled engine and electric driven testing are presented.
Technical Paper

Vehicle Body Structure Durability Analysis

1995-04-01
951096
Due to several indeterminate factors, the assessment of the durability performance of a vehicle body is traditionally accomplished using test methods. An analytical fatigue life prediction method (four-step durability process) that relies mainly on numerical techniques is described in this paper. The four steps comprising this process include the identification of high stress regions, recognizing the critical load types, determining the critical road events and calculation of fatigue life. In addition to utilizing a general purpose finite element analysis software for the application of the Inertia Relief technique and a previously developed fatigue analysis program, two customized programs have been developed to streamline the process into an integrated, user-friendly tool. The process is demonstrated using a full body, finite element model.
Technical Paper

Use of FCRASH in a Door Openability Simulation

1997-04-08
971526
During frontal and rear end type collisions, very large forces will be imparted to the passenger compartment by the collapse of either front or rear structures. NCAP tests conducted by NHTSA involve, among other things, a door openability test after barrier impact. This means that the plastic/irreversible deformations of door openings should be kept to a minimum. Thus, the structural members constituting the door opening must operate during frontal and rear impact near the elastic limit of the material. Increasing the size of a structural member, provided the packaging considerations permit it, may prove to be counter productive, since it may lead to premature local buckling and possible collapse of the member. With the current trend towards lighter vehicles, recourse to heavier gages is also counterproductive and therefore a determination of an optimum compartment structure may require a number of design iterations. In this article, FEA is used to simulate front side door behavior.
Technical Paper

Upfront Durability CAE Analysis for Automotive Sheet Metal Structures

1996-02-01
961053
Automotive product development requires higher degree of quality upfront engineering, faster CAE turn-around, and integration with other functional requirements. Prediction of potential durability concerns using analytical methods for sheet metal structures subjected to road loads and other customer uses has become very important. A process has been developed to provide design direction based upon peak loads, simultaneous peak loads, and vehicle program analytical or measured loads. It identifies critical loads at each input location and load sets for multiple input locations, filters load time histories, selects critical areas and analyzes for fatigue life. Several case studies have been completed. The results show that the variations are consistent with the accuracies in finite element analysis, road load data acquisition, and fatigue calculation methods.
Technical Paper

Understanding the Thermodynamics of Direct Injection Spark Ignition (DISI) Combustion Systems: An Analytical and Experimental Investigation

1996-10-01
962018
Direct-injection spark-ignition (DISI) engines have been investigated for many years but only recently have shown promise as a next generation gasoline engine technology. Much of this new enthusiasm is due to advances in the fuel injection system, which is now capable of producing a well-controlled spray with small droplets. A physical understanding of new combustion systems utilizing this technology is just beginning to occur. This analytical and experimental investigation with a research single-cylinder combustion system shows the benefits of in-cylinder gasoline injection versus injection of fuel into the intake port. Charge cooling with direct injection is shown to improve volumetric efficiency and reduce the mixture temperature at the time of ignition allowing operation with a higher compression ratio which improves the thermodynamic cycle efficiency.
Technical Paper

Transient A/F Estimation and Control Using a Neural Network

1997-02-24
970619
A new estimator for IC engine A/F ratio is described. A/F ratio is important for engine operation since it determines the quantities of engine emissions, such as HC, CO, NOx, the conversion efficiency of catalyst systems, and the engine combustion stability. The A/F ratio estimator described in this paper is based on a fundamental metric that relies on inducing and detecting crankshaft speed fluctuations caused by modulating the engine's fuel injection pulse widths. Fuel pulse width modulation varies the instantaneous combustion A/F ratio crankshaft velocity. Synchronous measurement of crankshaft velocity provides a metric that, when used with other engine state variables as inputs to a conventional neural network, can accurately estimate A/F ratio. The estimator provides A/F information when a physical sensor is not available.
Technical Paper

Thermal Durability of a Ceramic Wall-Flow Diesel Filter for Light Duty Vehicles

1992-02-01
920143
The thermal durability of a large frontal area cordierite ceramic wall-flow filter for light-duty diesel engine is examined under various regeneration conditions. The radial temperature distribution during burner regeneration, obtained by eight different thermocouples at six different axial sections of a 75″ diameter x 8″ long filter, is used together with physical properties of the filter to compute thermal stresses via finite element analysis. The stress-time history of the filter is then compared with the strength and fatigue characteristics of extruded cordierite ceramic monolith. The successful performance of the filter over as many as 1000 regenerations is attributed to three important design parameters, namely unique filter properties, controlled regeneration conditions, and optimum packaging design. The latter induces significant radial and axial compression in the filter thereby enhancing its strength and reducing the operating stresses.
Technical Paper

The Use of Finite Element Analysis to Predict Body Build Distortion

1995-04-01
951120
Finite element methods can be used to simulate a class of variation problems induced by build distortion in the assembly process. The FEM approach was used to study two representative assembly problems: 1) Front fender mounting and resulting distortion due to various fastening sequences; and, 2) Coupe door assembly process and resulting deformation due to clamping and welding of flexible sheet metal parts. FEM is used to generate sensitivities of various process conditions. Correlation with measured Co-ordinate Measuring Machine (CMM) data is shown. The use of FEM to simulate manufacturing/assembly processes in the automotive industry is in it's infancy. As the new methods are developed this capability can be used to study the assembly process and provide guidance in designing more robust parts and assembly processes.
Technical Paper

The Pulse Flame Combustor Revisited

1996-10-01
962118
The pulse flame combustor was adapted by researchers at Ford Motor Company in the early 1970s in order to produce exhaust gas simulating the combustion products of the internal combustion engine for the evaluation of automotive catalysts. Over the years, the pulse flame combustor has found application in a wide variety of research oriented tasks associated with automotive catalysts and emissions. More recent research and development efforts which have resulted due to elevated demands toward lower vehicle emission levels have prompted continuing refinements of the apparatus and effected innovative approaches to the study of emerging automotive catalyst and emission control issues with the pulse flame combustor. This report provides an overview of the operation and design evolution of the pulse flame combustor. In addition, recent applications of this laboratory device for studying automotive catalysts, alternative fuels, and other automotive emission control topics are reviewed.
Technical Paper

The New 1.0l Supercharger Zetec RoCam Engine

2002-11-19
2002-01-3438
The current Brazilian tax legislation promotes vehicles, powered by engines with up to 1.0l displacement. In order to offer the customer an engine with the maximum tax advantage, a supercharged derivative of the Ford 1.0l Zetec RoCam engine was developed. The market specific boundary conditions in South America require powertrains with immediate response especially at low engine speeds. This can be achieved by a supercharged engine concept. The paper discusses the required engine modifications for the supercharger application. The combustion system was changed to benefit from the higher volumetric efficiency, including the optimisation of the intake, exhaust and bypass control system. Extensive modifications of the base engine were required to adapt the engine to the higher thermal load and the specific boundary condition of a supercharger application.
Technical Paper

The Impact of Engine Design Constraints on Diesel Combustion System Size Scaling

2010-04-12
2010-01-0180
A set of scaling laws were previously developed to guide the transfer of combustion system designs between diesel engines of different sizes [ 1 , 2 , 3 , 4 ]. The intent of these scaling laws was to maintain geometric similarity of key parameters influencing diesel combustion such as in-cylinder spray penetration and flame lift-off length. The current study explores the impact of design constraints or limitations on the application of the scaling laws and the effect this has on the ability to replicate combustion and emissions. Multi dimensional computational fluid dynamics (CFD) calculations were used to evaluate the relative impact of engine design parameters on engine performance under full load operating conditions. The base engine was first scaled using the scaling laws. Design constraints were then applied to assess how such constraints deviate from the established scaling laws and how these alter the effectiveness of the scaling effort.
Technical Paper

The Ford PROCO Engine Update

1978-02-01
780699
The Ford PROCO stratified charge engine combines the desirable characteristics of premixed charge and Diesel engines. The outstanding characteristics of premixed charge engines are their high specific output, wide speed range, light weight and easy startability but they exhibit only modest fuel economy and relatively high exhaust emissions. The desirable characteristic of the Diesel engine is its outstanding fuel economy. However, the disadvantages of the Diesel, which include noisy operation, limited speed range, exhaust odor, smoke, hard startability, and particulate emissions have tended to limit their acceptance. In the gasoline fueled, PROCO stratified charge engine, direct cylinder fuel injection permits operation at overall lean mixture ratios and higher compression ratio. These features enable the PROCO engine to achieve brake specific fuel consumption values in the range of prechamber diesel engines.
Technical Paper

The Effects of Small Fuel Droplets on Cold Engine Emissions Using Ford's Air Forced Injection System

1995-10-01
952479
The effect of port injected small fuel droplets was evaluated for several different modes of engine operation. The droplets were generated by an Air Forced Injector (AFI), Figure 1, which uses high velocity air through a nozzle to produce fuel droplets on the order of 10mm Sauter Mean Diameter (SMD). AFI results were compared to those from a standard production pintle injector. Steady state data, “motored cold start” data, and injector cut-out data were collected. All three data sets illustrate functional advantages of AFI over standard Electronic Fuel Injection (EFI). Steady state testing showed that the AFI delivers complete freedom for specifying injection timing with respect to HC emissions. This freedom is highly advantageous for transient conditions because open valve injection with small droplets causes much less port wall wetting. Therefore, less control system compensation is necessary, and more accurate air-fuel ratio control is achievable.
Technical Paper

The Effects of Injector Targeting and Fuel Volatility on Fuel Dynamics in a PFI Engine During Warm-up: Part II - Modeling Results

1998-10-19
982519
The effects of injector targeting and fuel volatility on transient fuel dynamics were studied with a comprehensive quasi-dimensional model and compared with experimental results from Part I of this report (1). The model includes the transient, convective vaporization of four multi-component fuel films coupled with a transient thermal warm-up model for realistic valve, port and cylinder temperatures (2, 3). Two injector targetings were analyzed, first with the fuel impacting the intake valve and in addition, the fuel impacting the port floor directly in front of the intake valve. The model demonstrates the importance of both component temperature and fuel impaction area on fuel vaporization, transient air fuel ratio (AFR) response and the amount of liquid fuel entering the cylinder. Generally, a smaller injector footprint area will lead to more liquid fuel entering the cylinder even if the spray is targeted at the back of the intake valve.
Technical Paper

The Effects of Charge Motion on Early Flame Kernel Development

1993-03-01
930463
The fiber optic spark plug was used in conjunction with a piezoelectric pressure transducer to collect combustion diagnostic data on four production engines designed to generate quiescent, swirl, and tumble charge motions. Spark advance was varied under low speed, low load conditions to investigate changes in flame kernel behavior and in-cylinder charge motion as functions of crank angle and spark advance. Two flame kernel models were filled to the data and a critical comparison of the models was conducted. Flame kernel behavior was represented by three values: convection velocity, growth rate, and convection direction. Convection velocity was highest in the swirl chambers. It also varied considerably among cylinders in the same engine. Growth rate correlated well with 0-2% burn but showed negligible correlations with later burn or IMEP. Convection direction proved useful in determining flow direction near the plug.
Technical Paper

The Effects of Aging Temperature and Air-Fuel Ratio on the NOx Storage Capacity of a Lean NOx Trap

2004-03-08
2004-01-1493
This paper summarizes results from a study on the effects of aging temperature and A/F ratio on the NOx storage capacity of a lean NOx trap. When aged at stoichiometry at 700°C, the NOx storage capacity of the NOx trap dropped considerably during the first 200 hours of aging and then at a much slower rate beyond 200 hours. The NOx storage capacity dropped more rapidly as the aging temperature increased, with the drop in capacity particularly evident between 900°C and 1000°C. The drop in NOx capacity was significantly larger for samples aged with part-time lean operation and/or part-time rich operation than for samples aged continuously at stoichiometry. The detrimental effects of lean and rich operation increased as the temperature increased. A Pt/Al2O3 model catalyst was exposed to reducing conditions at temperatures ranging from 670°C to 1041°C and then to oxidizing conditions over the same temperature range, and in-situ XRD was used to investigate Pt particle coarsening.
Technical Paper

The Effect of Vehicle Exhaust System Components on Flow Losses and Noise in Firing Spark-Ignition Engines

1995-05-01
951260
Sound attenuation and flow loss reduction are often two competing demands in vehicle breathing systems. The present study considers a full vehicle exhaust system and investigates both the sound attenuation and the flow performance of production configurations including the catalyst, the resonator, and the muffler. Dynamometer experiments have been conducted with a firing Ford 3.0L, V-6 engine at wide-open throttle with speeds ranging from 1000 to 5000 rpm. Measurements including the flow rates, the temperatures and the absolute dynamic pressures of the hot exhaust gases at key locations (upstream and downstream of every component) with fast-response, water-cooled piezo-resistive pressure transducers facilitate the calculation of acoustic performance of each component, as well as the determination of flow losses caused by these elements and their influence on the engine performance.
Technical Paper

The Effect of Turbulence on the Hydrocarbon Emissions from Combustion in a Constant Volume Reactor

1984-02-01
840366
A cylindrical combustion bomb with dynamic charging system and electro-hydraulic sampling valve is used to study the effects of turbulence on hydrocarbon (HC) emissions from a quench layer and from artificial crevices. The turbulence level is varied by changing the delay time between induction of combustible charge and ignition. Propane-air mixtures were studied over an initial pressure range of 150 to 500 kPa and equivalence ratios of 0.7 to 1.4. Sampling valve experiments show that quench-layer fuel hydrocarbons are extensively oxidized within 5 ms of flame arrival under laminar conditions and that turbulence further reduces the already low level. Upper limit estimates of the residual wall layer HC concentration show that residual quench layer hydrocarbons are only a small fraction of the exhaust HC emission.
Technical Paper

The Effect of Mileage on Emissions and Emission Component Durability by the Fuel Additive Methylcyclopentadiencyl Manganese Tricarbonyl (MMT)

1992-02-01
920730
Vehicle emissions have been measured and the results statistically evaluated for a vehicle test fleet consisting of four Escorts and four Explorers using both a fully formulated durability fuel doped with methylcyclopentadienyl manganese tricarbonyl (MMT) at 1/32 gram Mn/gallon and the same fully formulated durability fuel without the MMT. The fleet was divided in half -- half with MMT and half without MMT doped fuel. This report covers emission measurement results at 5,000; 15,000; 50,000 and 100,000 miles of exposure to MMT doped fuel. A modified paired t-test is used to analyze the emission data obtained from all the fleet vehicles. The statistical evaluation of both feedgas and tailpipe emissions indicate that the use of MMT is detrimental to emissions of HC at the 15,000 mile; 50,000 mile and 100,000 mile levels of MMT exposure. As mileage is accumulated, the pronounced the effect on HC by the fuel additive MMT.
X