Refine Your Search

Topic

Search Results

Technical Paper

VERTdePN Quality Test Procedures of DPF+SCR Systems

2014-04-01
2014-01-1579
The combined exhaust gas aftertreatment systems (DPF+SCR) are the most efficient way and the best available technology (BAT) to radically reduce the critical Diesel emission components particles (PM&NP) and nitric oxides (NOx). SCR (selective catalytic reduction) is regarded as the most efficient deNOx-system, diesel particle filters are most efficient for soot abatement. Today, several suppliers offer combined systems for retrofitting of HD vehicles. Quality standards for those quite complex systems and especially for retrofit systems are needed to enable decisions of several authorities and to estimate the potentials of improvements of the air quality in highly populated agglomerations. The present paper informs about the VERTdePN *) quality test procedures, which were developed in an international network project with the same name 2007-2011 (VERT … Verification of Emission Reduction Technologies; dePN … decontamination, disposal of PM / NP and of NOx).
Technical Paper

Testing of SCR-Systems on HD-Vehicles-TeVeNOx

2014-04-01
2014-01-1569
The selective catalytic reduction SCR is extensively used for NOx reduction of recent HD-vehicles. There are some manufacturers and some applications of SCR as retrofit systems (mostly for the low emission zones LEZ and in combination with a DPF). In charge of Swiss authorities AFHB investigated several SCR-systems, or (DPF+SCR)-systems on HD-vehicles and proposed a simplified quality test procedure of those systems. This procedure can especially be useful for the admission of retrofit systems but it can also be helpful for the quality check of OEM-systems. The project name was TeVeNOx - Testing of Vehicles with NOx reduction systems. In the present paper the test procedures will be described and some specific results will be discussed.
Technical Paper

Quantitative Analysis of Low Pressure-Driven Spray Mass Distribution and Liquid Entrainment for SCR Application through a Mechanical Patternator

2017-03-28
2017-01-0965
The application of liquid aqueous Urea Solution (AUS) as reductant in SCR exhaust after-treatment systems is now a commonly accepted industry standard. Unfortunately, less acceptable are the associated difficulties caused by incomplete decomposition of the liquid, resulting in solid deposits which accumulate in the exhaust pipe downstream of the dosing components. The correct prediction of the spray pattern and, therefore, the spray impact on the walls is a key feature for the system optimization. A mechanical patternator, designed on the basis of CFD performance assessment, involving a Lagrangian representation of the dispersed liquid fully coupled with a 3D Eulerian description of the carrier phase, has been built and used to measure the spray mass distribution.
Technical Paper

Particulate Traps Used in City-Buses in Switzerland

2000-06-19
2000-01-1927
1 Switzerland is enforcing the use of particulate traps for offroad applications like construction as well as for occupational health applications like tunneling. This decision is based on the results of the VERT-project (1994-1999), which included basic aerosol research, bench screening and field testing of promising solutions as well as the development of implementation tools like trap specification, certification scheems and field control measures. On the other hand there is no corresponding regulation for city-buses yet although PM 10 is about 2× above limit in most Swiss cities. Public pressure however is growing and city transport authorities have reacted by retrofitting Diesel city-buses instead of waiting for cleaner engine technology or CNG-conversions. The favored trap system with about 200 retrofits so far is the CRT.
Technical Paper

Particle Filter Properties after 2000 hrs Real World Operation

2008-04-14
2008-01-0332
Diesel particle filters (DPFs) efficiently eliminate soot, fuel-, and oil-ash emissions of diesel engines, but little data are available with respect to long term aging or deterioration effects of DPFs under real world operating conditions. Aging of wash coat- and catalyst-materials, catalyst poisoning, ash sintering, adsorption and long lasting storage of semi- or non-volatile substances can take place, which over time may influence filtration and conversion properties of DPFs. Herein we report to what extent DPF aging may affect particle filtration characteristics. We compared particle number concentrations (PN), and particle mass (PM) emissions after a 2000 operating hours endurance test (VFT2). Such a controlled field test is required by VERT verification procedures, which lately were published as a national standard (SNR 277205).
Technical Paper

Particle Emissions of a TDI-Engine with Different Lubrication Oils

2005-04-11
2005-01-1100
Due to increasing concern about health effects of fine and ultra-fine particles (nanoparticles) from combustion engines, the diesel particle filter technology (DPF) *) was extensively introduced to heavy duty and passenger cars in the last years. In this respect, a very important parameter is the irreversible plugging of the DPF with non-combustible ashes. The quality of lubrication oil, especially the ash content has a certain influence on regeneration intervals of diesel particle filters. In the present study, the effects of different lubrication oils on particle mass and nano-particle size distribution were investigated. The test engine was a modern diesel engine without particle filter system. A main goal was to find out, how different lubrication oils influence the particulate emissions and the contribution of oil to total particle emissions. Moreover, first results of a tracing study will be discussed.
Technical Paper

PN-Emissions of Gasoline Cars MPI and Potentials of GPF

2018-04-03
2018-01-0363
Further efforts to reduce the air pollution from traffic are undertaken worldwide and the filtration of exhaust gas will also be increasingly applied on gasoline cars (GPF1 … gasoline particle filter). In the present paper, some results of investigations of nanoparticles from four MPI gasoline cars are represented. The measurements were performed at vehicle tailpipe and in CVS-tunnel. Moreover, two variants of GPF were investigated on a high-emitting modern vehicle, including analytics of PAH and attempts of soot loading in road application. The modern MPI vehicles can emit a considerable amount of PN, which in some cases attains the level of Diesel exhaust gas without DPF and can pass over the actual European limit value for GDI (6.0 x 1011 #/km). The GPF-technology offers in this respect further poten-tials to reduce the PN-emissions of traffic.
Technical Paper

Oxidative Reactivity of Soot Particles Generated from the Combustion of Conventional Diesel, HVO and OME Collected in Particle Filter Structures

2021-09-05
2021-24-0085
The reduction of CO2 emissions in transport and power generation is currently a key challenge. One particular opportunity of CO2 reduction is the introduction of low CO2 or even CO2 neutral fuels. The combustion characteristics of such fuels are different and require engine settings modification. In addition, emissions characteristics differ significantly among different fuels. In the present study a one cylinder diesel engine was operated with conventional diesel, hydrogenated vegetable oil (HVO) and polyoxymethyl dimethyl ether (OME) as well as a series of blends. Particle filter segments were positioned in the exhaust of the engine and loaded with particles originating from the combustion of these fuels. The filter segments have been regenerated individually in a specifically designed and developed controlled temperature soot oxidation apparatus.
Journal Article

Numerical Modelling and Experimental Characterization of a Pressure-Assisted Multi-Stream Injector for SCR Exhaust Gas After-Treatment

2014-10-13
2014-01-2822
Simulations for a pressure-assisted multi-stream injector designed for urea-dosing in a selective catalytic reduction (SCR) exhaust gas system have been carried out and compared to measurements taken in an optically accessible high-fidelity flow test rig. The experimental data comprises four different combinations of mass flow rate and temperature for the gas stream with unchanged injection parameters for the spray. First, a parametric study is carried out to determine the importance of various spray sub-models, including atomization, spray-wall interaction, buoyancy as well as droplet coalescence. Optimal parameters are determined using experimental data for one reference operating condition.
Technical Paper

Nanoparticle Emissions of DI Gasoline Cars with/without GPF

2017-03-28
2017-01-1004
In the present paper some results of investigations of nanoparticles from five DI gasoline cars are represented. The measurements were performed at vehicle tailpipe and in CVS-tunnel. Moreover, five variants of “vehicle - GPF” were investigated. These results originate from the project GasOMeP (Gasoline Organic & Metal Particulates), which focused on metal-nanoparticles (including sub 20nm) from gasoline cars with different engine technologies. The PN-emission level of the investigated GDI cars in WLTC without GPF is in the same range of magnitude very near to the actual limit value of 6.0 × 1012 #/km. With the GPF’s with better filtration quality, it is possible to lower the emissions below the future limit value of 6.0 × 1011 #/km. There is no visible nuclei mode and the ultrafine particle concentrations below 10mm are insignificant. Some of the vehicles show at constant speed operation a periodical fluctuation of the NP-emissions, as an effect of the electronic control.
Technical Paper

Metal Oxide Particle Emissions from Diesel and Petrol Engines

2012-04-16
2012-01-0841
All internal combustion piston engines emit solid nanoparticles. Some are soot particles resulting from incomplete combustion of fuels, or lube oil. Some particles are metal compounds, most probably metal oxides. A major source of metal compound particles is engine abrasion. The lube oil transports these abraded particles into the combustion zone. There they are partially vaporized and ultrafine oxide particles formed through nucleation [1]. Other sources are the metallic additives to the lube oil, metallic additives in the fuel, and debris from the catalytic coatings in the exhaust-gas emission control devices. The formation process results in extremely fine particles, typically smaller than 50 nm. Thus they intrude through the alveolar membranes directly into the human organism. The consequent health risk necessitates a careful investigation of these emissions and effective curtailment.
Technical Paper

Low Pressure-Driven Injection Characterization for SCR Applications

2019-04-02
2019-01-0994
Aqueous Urea is a non-toxic and stable ammonia carrier and its injection and mixing represent the basis for the most common de-NOx technology for mobile applications. The reactant feed preparation process is defined by evaporation, thermolysis and hydrolysis of the liquid mixture upstream the Selective Catalytic Reduction reactor, and it is strongly dependent on the interaction between spray and gaseous flow. Low-pressure driven injectors are the common industrial standard for these applications, and their behavior in almost-ambient pressure cross flows is significantly different from any in-cylinder application. For this reason, two substantially different injectors in terms of geometry and design are experimentally studied, characterizing drop sizes and velocities through Phase Doppler Anemometry (PDA) and liquid mass spatial distribution through Shadow Imaging (SI).
Technical Paper

Investigation of the Oxidation Behavior of Soot in Diesel Particle Filter structures

2015-09-06
2015-24-2516
Particulate matter in diesel exhaust is captured in diesel particulate filters (DPFs). Since increased load in the filter and thus increased pressure drop deteriorates the engine performance, the filter load of the DPF has to be removed during a process referred to as regeneration. Measures for successful regeneration aim at accelerating soot oxidation and increase fuel consumption. Regeneration lay-out and thus fuel consumption increase is strongly depending on the oxidation behavior of soot. The aim of the present study is the investigation of soot oxidation characteristics. Therefore particle filters have been loaded with soot using the exhaust gas of small heavy duty vehicle operated under defined conditions on an engine dynamometer. The particle filters have been then dismantled and fragmented on their constituting segments. Each filter segment has been regenerated individually in a specifically designed test bench.
Technical Paper

Impact of RME/Diesel Blends on Particle Formation, Particle Filtration and PAH Emissions

2005-04-11
2005-01-1728
Vegetable oils blended to Diesel fuel are becoming popular. Economic, ecological and even political reasons are cited to decrease dependence on mineral oil and improve CO2 balance. The chemical composition of these bio fuels is different from mineral fuel, having less carbon and much more oxygen. Hence, internal combustion of Diesel + RME (Rapeseed Methyl Ester) blends was tested with particular focus on nanoparticle emissions, particle filtration characteristics and PAH-emissions. Fuel economy and emissions of bus engines were investigated in traffic, on a test-rig during standardized cycles, and on the chassis dynamometer. Fuel compositions were varied from standard EN 590 Diesel with <50 ppm sulfur to RME blends of 15, 30, and 50%. Also 100 % RME was tested on the test-rig. Emissions were compared with and without CRT traps. The PAH profiles of PM were determined. Particles were counted and analyzed for size, surface, and composition, using SMPS, PAS, DC and Coulometry.
Journal Article

Fluid Dynamic Comparison of AdBlue Injectors for SCR Applications

2015-09-06
2015-24-2502
The injection process of urea-water solution (AdBlue) determines initial conditions for reactions and catalysis and is fundamentally responsible for optimal operation of selective catalytic reduction (SCR) systems. The spray characteristics of four, commercially available, injectors (one air-assisted and three pressure-driven with different nozzle-hole configurations) are investigated with non-intrusive measuring techniques. Injection occurred in the crossflow of a channel blowing preheated air in an exhaust duct similar configuration. The effect of several gas temperatures and flows on the spray propagation and entrainment has been extensively studied by shadow imaging. Shadow images, in addition, show that the spray of the pressure-driven injectors is only marginally affected by the gas crossflow. In contrast, the air assisted spray is strongly deflected by the gas, the effect increasing with increasing gas flow.
Technical Paper

Experiences from Nanoparticle Research on Four Gasoline Cars

2015-04-14
2015-01-1079
The invisible nanoparticles (NP)*) from combustion processes penetrate easily into the human body through the respiratory and olfactory pathways and carry numerous harmful health effects potentials. NP count concentrations are limited in EU for Diesel passenger cars since 2013 and for gasoline cars with direct injection (GDI) since 2014. The limit for GDI was temporary extended to 6 × 1012 #/km, (regulation No. 459/2012/EU). Nuclei of metals as well as organics are suspected to significantly contribute especially to the ultrafine particle size fractions, and thus to the particle number concentration. In the project GasOMeP (Gasoline Organic & Metal Particulates) metal-nanoparticles (including sub 20nm) from gasoline cars are investigated for different engine technologies. In the present paper some results of investigations of nanoparticles from four gasoline cars - an older one with MPI and three newer with DI - are represented.
Technical Paper

Diesel Emissions with DPF & SCR and Toxic Potentials with BioDiesel (RME) Blend Fuels

2013-04-08
2013-01-0523
The use of alternative fuels and among them the biofuels of 1st generation - fatty acid methyl esters FAME's and pure plants oils - for propulsion of IC engines is an important objective in several countries in order to save the fossil fuels and to limit the CO₂ production. The properties of bio-fuels and bio-blend-fuels can vary and this has an impact on the operation and emissions of diesel engines and on the modern exhaust aftertreatment systems. The present paper represents the most important results obtained with RME at AFHB, EMPA and EC-JRC. Most of the activities were performed in the network project BioExDi (Biofuels, Exhaust Systems Diesel) in collaboration between industry and research institutes.
Technical Paper

Diesel Emission with DPF+SCR in VERTdePN - Testing & Potentials

2011-04-12
2011-01-1139
The most efficient way and the best available technology (BAT) to radically reduce the critical diesel emission components particles (PM&NP) and nitric oxides (NOx) are combined exhaust gas aftertreatment systems (DPF+SCR). SCR (selective catalytic reduction) is regarded as the most efficient deNOx-system, diesel particle filters are most efficient for soot abatement. Today, several suppliers offer combined systems for retrofitting of HD vehicles. The presented results are part of the work in the international network project VERT *) dePN (de-activation, de-contamination, disposal of particles and NOx), which has the objectives to establish test procedures and quality standards and to introduce the SCR-, or combined DPF+SCR-systems in the VERT verification procedure.
Technical Paper

DPF's Regeneration Procedures and Emissions with RME Blend Fuels

2012-04-16
2012-01-0844
The fatty acid methyl esters (FAME's) - in Europe mostly RME (Rapeseed methyl ester) - are used in several countries as alternative biogene diesel fuels in various blending ratios with fossil fuels (Bxx). Questions often arise about the influences of these biocomponents on the modern exhaust aftertreatment systems and especially on the regeneration of diesel particle filters (DPF). In the present work different regeneration procedures of DPF systems were investigated with biofuels B0, B20 & B100. The tested regeneration procedures were: - passive regenerations: DOC + CSF; CSF alone, and - active regenerations: standstill burner; fuel injections & DOC. During each regeneration on-line measurements of regulated and unregulated emission components (nanoparticles & FTIR) were conducted. It can be stated that the increased portion of RME in fuel provokes longer time periods to charge the filter with soot.
X