Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

the behavior of Radiation-Resistant ANP TURBINE LUBRICANTS

1959-01-01
590051
RADIATION can produce almost instantaneous failure of modern aircraft lubricants, tests at Southwest Research Institute show. Two types of failures demonstrated are rapid viscosity rise and loss of heat conductivity. Furthermore, it was found that lubricants can become excessively corrosive under high-level radiation. Generally speaking, the better lubricants appeared to improve in performance while marginal ones deteriorated to a greater extent under radiation. When the better lubricants were subjected to static irradiation prior to the deposition test, there was a minor increase in deposition number as the total dose was increased.
Technical Paper

Water-Gas-Shift Catalyst Development and Optimization for a D-EGR® Engine

2015-09-01
2015-01-1968
Dedicated Exhaust Gas Recirculation (D-EGR®) technology provides a novel means for fuel efficiency improvement through efficient, on-board generation of H2 and CO reformate [1, 2]. In the simplest form of the D-EGR configuration, reformate is produced in-cylinder through rich combustion of the gasoline-air charge mixture. It is also possible to produce more H2 by means of a Water Gas Shift (WGS) catalyst, thereby resulting in further combustion improvements and overall fuel consumption reduction. In industrial applications, the WGS reaction has been used successfully for many years. Previous engine applications of this technology, however, have only proven successful to a limited degree. The motivation for this work was to develop and optimize a WGS catalyst which can be employed to a D-EGR configuration of an internal combustion engine. This study consists of two parts.
Technical Paper

Verification of a Gaseous Portable Emissions Measurement System with a Laboratory System Using the Code of Federal Regulations Part 1065

2010-04-12
2010-01-1069
This paper summarizes the validation testing of the Horiba Instruments OBS-2200 gaseous portable emissions measurement system (PEMS) for in-use compliance testing per Title 40 of the Code of Federal Regulations (CFR) Part 1065.920 (Section 1065.920). The qualification process included analyzer verifications as well as engine testing on a model-year 2007 heavy-duty diesel engine produced by Volvo Powertrain. The measurements of brake-specific emissions with the OBS-2200 were compared to those of a CFR Part 1065-compliant CVS test cell over a series of not-to-exceed (NTE) events. The OBS-2200 passed all linearity verifications and analyzer checks required of PEMS. Engine test validation was achieved for all three regulated gaseous emissions (CO, NMHC, and NOX) per 40 CFR Part 1065.920(b)(5)(i), which requires a minimum of 91 percent of the measurement allowance adjusted deltas to be less than or equal to zero.
Technical Paper

Validation Method for Diesel Particulate Filter Durability

2007-10-29
2007-01-4086
The diesel particulate filter (DPF) is a critical aftertreatment device for control of particulate matter (PM) emissions from a diesel engine. DPF survivability is challenged by several key factors such as: excessive thermal stress due to DPF runaway regenerations (or uncontrolled regeneration) may cause DPF substrate and washcoat failure. Catalyst poisoning elements from the diesel fuel and engine oil may cause performance degradation of the catalyzed DPF. Harsh vibration from the powertrain, as well as from the road surface, may lead to mechanical failure of the substrate and/or the matting material. Evaluations of these important validation parameters were performed.
Journal Article

Use of Nitric Acid to Control the NO2:NOX Ratio within the Exhaust Composition Transient Operation Laboratory Exhaust Stream

2020-04-14
2020-01-0371
The Exhaust Composition Transient Operation LaboratoryTM (ECTO-LabTM) is a burner system developed at Southwest Research Institute (SwRI) for simulation of IC engine exhaust. The current system design requires metering and combustion of nitromethane in conjunction with the primary fuel source as the means of NOX generation. While this method affords highly tunable NOX concentrations even over transient cycles, no method is currently in place for dictating the speciation of nitric oxide (NO) and nitrogen dioxide (NO2) that constitute the NOX mixture. NOX generated through combustion of nitromethane is dominated by NO, and generally results in an NO2:NOX ratio of < 5 %. Generation of any appreciable quantities of NO2 is therefore dependent on an oxidation catalyst to oxidize a fraction of the NO to NO2.
Technical Paper

Use of Butane as an Alternative Fuel-Emissions from a Conversion Vehicle Using Various Blends

1995-10-01
952496
This paper describes experiments conducted to determine the regulated emissions, ozone-forming potentials, specific reactivities, and reactivity adjustment factors for eight butane and propane alternative fuel blends run on a light-duty vehicle, emission certified to be a California transitional low emission vehicle (TLEV) and converted to operate on liquefied petroleum gas (LPG). Duplicate EPA FTP emission tests were conducted with each fuel. Hydrocarbon speciation was utilized to determine reactivity-adjusted non-methane organic gases (NMOG) emissions for one test on each fuel. Results showed that all eight fuels could allow the converted vehicle to pass California ultra-low emission vehicle (ULEV) NMOG and oxides of nitrogen (NOx) standards. Six of the eight fuels could allow the vehicle to pass ULEV carbon monoxide (CO) standards. BUTANE has been an important gasoline blending component for many years.
Technical Paper

Use of Alcohol-in-Diesel Fuel Emulsions and Solutions in a Medium-Speed Diesel Engine

1981-02-01
810254
The use of alcohol as a supplemental fuel for a medium-speed diesel engine was investigated using a two-cylinder, two-stroke test engine. Both stabilized and unstabilized emulsions of methanol-in-diesel fuel and ethanol-in-diesel fuel were tested. Also, anhydrous ethanol/diesel fuel solutions were evaluated. Maximum alcohol content of the emulsions and solutions was limited by engine knocking due to a reduction in fuel cetane number. Engine power and thermal efficiency were slightly below baseline diesel fuel levels in the high and mid-speed ranges, but were somewhat improved at low speeds during tests of the unstabilized emulsions and the ethanol solutions. However, thermal efficiency of the stabilized emulsions fell below baseline levels at virtually all conditions.
Technical Paper

Updating China Heavy-Duty On-Road Diesel Emission Regulations

2012-04-16
2012-01-0367
With the rapid expansion of the automotive market in China, air quality in the major cities has become a severe concern. Great efforts have been made in introducing new emission regulations; however, fuel and lubricant qualities, emissions aftertreatment system durability and in-use compliance to the emissions regulations still require significant improvement. China follows the European Union (EU) emission regulations in general, but different levels of standards exist. This paper gives a comprehensive overview of the current and near-future heavy-duty diesel emission regulations, as well as fuel and lubricant specifications.
Technical Paper

Unregulated Emissions Characterization and Comparison for Two Off-Road Applications: A DPF and Non-DPF Engine

2022-03-29
2022-01-0587
As governmental agencies focus on low levels of the oxides of nitrogen (NOx) emissions compliance, new off-road applications are being reviewed for both regulated and unregulated emissions to understand the technological challenges and requirements for improved emissions performance. The California Air Resources Board (CARB) has declared its intention to pursue more stringent NOX standards for the off-road market. As part of this effort, CARB initiated a program to provide a detailed characterization of emissions meeting the current Tier 4 off-road standards [1]. This work focused on understanding the off-road market, establishing a current technology emissions baseline, and performing initial modeling on potential low NOx solutions. This paper discusses a part of this effort, focuses on the emissions characterization from two non-road engine platforms, and compares the emissions species from different approaches designed to meet Tier 4 emissions regulations.
Technical Paper

Ultra Low Sulfur Diesel (ULSD) Sulfur Test Method Variability: A Statistical Analysis of Reproducibility from the 2005 US EPA ULSD Round-Robin Test Program

2006-10-16
2006-01-3360
Beginning June 1, 2006, 80% of the highway diesel fuel produced in the United States had to contain 15 ppm sulfur or less. To account for sulfur test method variability, the United States Environmental Protection Agency (US EPA) allowed a 2 ppm compliance margin, meaning that in an EPA enforcement action fuel measuring 17 ppm or less would still be deemed compliant since the true sulfur level could still be 15 ppm. Concern was voiced over the appropriateness of the 2 ppm compliance margin, citing recent American Society for Testing and Materials (ASTM) round-robin and crosscheck test program results that showed sulfur test lab-to-lab variability (reproducibility) on the order of 4 to 5 ppm depending on test method.
Technical Paper

Ultra Low Emissions and High Efficiency from an On-Highway Natural Gas Engine

1998-05-04
981394
Results from work focusing on the development of an ultra low emissions, high efficiency, natural gas-fueled heavy- duty engine are discussed in this paper. The engine under development was based on a John Deere 8.1L engine; this engine was significantly modified from its production configuration during the course of an engine optimization program funded by the National Renewable Energy Laboratory. Previous steady-state testing indicated that the modified engine would provide simultaneous reductions in nonmethane hydrocarbon emissions and fuel consumption while maintaining equivalent or lower NOx levels. Federal Test Procedure transient tests confirmed these expectations. Very low NOx emissions, averaging 1.0 g/bhp-hr over hot-start cycles, were attained; at these conditions, reductions in engine-out nonmethane hydro-carbons emissions (NMHC) were approximately 30 percent, and fuel consumption over the cycle was also reduced relative to the baseline.
Technical Paper

US 2010 Emissions Capable Camless Heavy-Duty On-Highway Natural Gas Engine

2007-07-23
2007-01-1930
The goal of this project was to demonstrate a low emissions, high efficiency heavy-duty on-highway natural gas engine. The emissions targets for this project are to demonstrate US 2010 emissions standards on the 13-mode steady state test. To meet this goal, a chemically correct combustion (stoichiometric) natural gas engine with exhaust gas recirculation (EGR) and a three way catalyst (TWC) was developed. In addition, a Sturman Industries, Inc. camless Hydraulic Valve Actuation (HVA) system was used to improve efficiency. A Volvo 11 liter diesel engine was converted to operate as a stoichiometric natural gas engine. Operating a natural gas engine with stoichiometric combustion allows for the effective use of a TWC, which can simultaneously oxidize hydrocarbons and carbon monoxide and reduce NOx. High conversion efficiencies are possible through proper control of air-fuel ratio.
Technical Paper

U.S. Army Investigation of Diesel Exhaust Emissions Using JP-8 Fuels with Varying Sulfur Content

1996-10-01
961981
Comparative emission measurements were made in two dynamometer-based diesel engines using protocol specified by the U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (CARB). A single JP-8 fuel with a sulfur level of 0.06 weight percent (wt%) was adjusted to sulfur levels of 0.11 and 0.26 wt%. The emission characteristics of the three fuels were compared to the 1994 EPA certification low-sulfur diesel fuel (sulfur level equal to 0.035 wt%) in the Detroit Diesel Corporation (DDC) 1991 prototype Series 60 diesel engine and in the General Motors (GM) 6.2L diesel engine. Comparisons were made using the hot-start transient portion of the heavy-duty diesel engine Federal Test Procedure. Results from the Army study show that the gaseous emissions for the DDC Series 60 engine using kerosene-based JP-8 fuel are equivalent to values obtained with the 0.035 wt% sulfur EPA certification diesel fuel.
Technical Paper

Transient Emissions from Two Natural Gas-Fueled Heavy-Duty Engines

1993-10-01
932819
The use of compressed natural gas as an alternative to conventional fuels has received a great deal of attention as a strategy for reducing air pollution from motor vehicles. In many cases, regulatory action has been taken to displace diesel fuel with natural gas in truck and bus applications. Emissions results of heavy-duty transient FTP testing of two Cummins L10-240G natural gas engines are presented. Regulated emissions of non-methane hydrocarbons, total hydrocarbons, CO, NOx, and particulate were characterized, along with emissions of formaldehyde. The effects of air/fuel ratio adjustments on these emissions were explored, as well as the effectiveness of catalytic aftertreatment in reducing exhaust emissions. Compared to typical heavy-duty diesel engine emissions, CNG-fueled engines using exhaust aftertreatment have great potential for meeting future exhaust emission standards, although in-use durability is unproven.
Technical Paper

Toward the Environmentally-Friendly Small Engine: Fuel, Lubricant, and Emission Measurement Issues

1991-11-01
911222
Small engines which are friendly toward the environment are needed all over the world, whether the need is expressed in terms of energy efficiency, useful engine life, health benefits for the user, or emission regulations enacted to protect a population or an ecologically-sensitive area. Progress toward the widespread application of lower-impact small engines is being made through engine design, matching of engine to equipment and task, aftertreatment technology, alternative and reformulated fuels, and improved lubricants. This paper describes three research and development projects, focused on the interrelationships of fuels, lubricants, and emissions in Otto-cycle engines, which were conducted by Southwest Research Institute. All the work reported was funded internally as part of a commitment to advance the state of small engine technology and thus enhance human utility.
Technical Paper

Three-Point Belt Induced Injuries: A Comparison Between Laboratory Surrogates and Real World Accident Victims

1975-02-01
751141
Injuries produced by standard three point restraint systems with retractors will be compared between cadavers in laboratory simulated collisions at 30 mph barrier equivalent speed and lap and shoulder belted front seat occupants in real world frontal collisions of '73-'75 full sized cars. Tests conducted at SwRI with belted, unembalmed, fresh cadavers have resulted in extremely severe thoracic and cervical injuries, including multiple rib fractures, fractures of the sternum, clavicle and cervical vertebrae. On the other hand, injury data from a national accident investigation study to evaluate the effectiveness of restraints in late model passenger cars indicates that such injuries in real world crashes of equivalent severity are not always observed. The reasons possible for these differences are discussed. Both programs at SwRI are funded by the National Highway Traffic Safety Administration.
Technical Paper

The Winch-Dozer - A Tool for Area Mine Spoil Leveling

1977-02-01
770550
A new approach to reclaiming the spoil areas produced by area-type mining operations has been developed. This system uses a machine known as a winch-dozer, consisting of a pair of large back-to-back buckets which are drawn by cable across spoil piles, moving back and forth between a “tailblock” anchor and a “drawworks” winch unit developed as an attachment to a large crawler tractor. The system is expected to reduce the cost of reclamation leveling by 40-50%. The system permits more effective power utilization due to the blade system's light weight, induces caving of spoil banks, and permits moving spoil in both directions of blade travel.
Technical Paper

The Use of Radioactive Tracer Technology to Measure Real-Time Wear in Engines and Other Mechanical Systems

2007-04-16
2007-01-1437
Radioactive tracer technology (RATT™) is an important tool for measuring real-time wear in operating engines and other mechanical systems. The use of this technology provides important wear information that is not available by other, more conventional wear measurement methods. The technology has advanced to the point where several components can be interrogated simultaneously, and new methods have extended the method to materials that are normally not amenable to radioactive tracer evaluation. In addition, sensitivity has increased so that the onset of wear can be detected long before practical with non-tracer methods. This improves the ability to measure and determine cause and effect relationships, thus providing a better understanding of wear responses to specific operating conditions and to changes in operating conditions. This paper reviews the radioactive tracer process and recent improvements that have extended its reach in both automotive and non-automotive applications.
Technical Paper

The Use of Radioactive Tracer Technology to Evaluate Engine Wear Under the Influences of Advanced Combustion System Operation and Lubricant Performance

2005-10-24
2005-01-3689
Radioactive tracer technology is an important tool for measuring component wear on a real-time basis and is especially useful in measuring engine wear as it is affected by combustion system operation and lubricant performance. Combustion system operation including the use of early and/or late fuel injection and EGR for emissions control can have a profound effect on aftertreatment contamination and engine reliability due to wear. Liner wear caused by localized fuel impingement can lead to excessive oil consumption and fuel dilution can cause excessive wear of rings and bearings. To facilitate typical wear measurement, the engine's compression rings and connecting rod bearings are initially exposed to thermal neutrons in a nuclear reactor to produce artificial radioisotopes that are separately characteristic of the ring and bearing wear surfaces.
Technical Paper

The Use of Radioactive Tracer Technology in Studying Lubricant Chemistry to Enhance Bearing and Ring Wear Control in an Operating Engine

1994-10-01
941982
Radioactive tracer technology (RAT) is an important tool in measuring component wear in an operating engine on a real-time basis. This paper will discuss the use of RAT to study and evaluate boundary lubricant and surfactant chemistries aimed at providing benefits in wear control. In particular, RAT was employed to study ring and bearing wear as a function of engine operating condition (speed, load, and temperature) and lubricant characteristics. Prior to testing, the engine's compression rings and connecting rod bearings were subjected to bulk thermal neutron bombardment in a nuclear reactor to produce artificial radioisotopes that were separately characteristic of the ring and bearing wear surfaces. The irradiated parts were installed in the test engine, after which testing to a specific test matrix was accomplished.
X